
UNDERSTANDING THE CHALLENGES OF REPRODUCING
DEEP LEARNING BUGS

by

Mehil B. Shah

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

December 2024

© Copyright by Mehil B. Shah, 2024

I dedicate this thesis to my family - my mother, Shilpa Shah, and my

father, Bimal Shah, who taught me about life and everything beyond,

and my dear grandparents, the late Manorama Shah and the late

Chandrakant Shah, whose memories I hold close to my heart. Every

achievement of mine is a testament to their love, faith, and guidance.

ii

Table of Contents

Abstract . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Contribution . 3

1.4 Related Publications . 6

1.5 Outline of the report . 6

Chapter 2 Background . 8

2.1 Deep Learning Bugs . 8
2.1.1 Training Issues . 8
2.1.2 Model Issues . 9
2.1.3 Tensor and Input Issues . 9
2.1.4 API Issues . 10
2.1.5 GPU Issues . 10

2.2 Deep Learning Bug Reports . 11

2.3 Data Quality Issues in Software Engineering Datasets 12

2.4 Model Explanation . 13

2.5 Summary . 14

Chapter 3 Towards Understanding the Impact of Data Bugs on Deep
Learning Models in Software Engineering 15

3.1 Introduction . 15

3.2 Methodology . 19
3.2.1 Data Type Selection . 19
3.2.2 Study Design . 20
3.2.3 Experimental Setup . 22
3.2.4 Quantitative Analysis . 24
3.2.5 Post-Hoc Analysis . 25

iii

3.2.6 Validating the Derived Findings 25

3.3 Study Findings . 27
3.3.1 RQ1: How do data quality and preprocessing issues in code-

based data affect the training behaviour of deep learning models? 27
3.3.2 RQ2: How do data quality and preprocessing issues in text-

based data affect the training behaviour of deep learning models? 31
3.3.3 RQ3: How do data quality and preprocessing issues in metric-

based data affect the training behaviour of deep learning models? 37
3.3.4 RQ4: How well do our findings on data quality and prepro-

cessing issues generalize to other code-based, text-based, and
metric-based datasets? . 41

3.3.5 Statistical Signifiance Tests 43

3.4 Implications for Bug Reproduction 44

3.5 Related Work . 45

3.6 Threats to Validity . 47

3.7 Summary . 48

Chapter 4 Towards Enhancing the Reproducibility of Deep Learn-
ing Bugs: An Empirical Study 49

4.1 Introduction . 49

4.2 Motivating Example . 52

4.3 Study Methodology . 55
4.3.1 Selection of Data Sources . 55
4.3.2 Dataset Construction . 57
4.3.3 Environment Setup . 58
4.3.4 Manual Classification of Posts 59
4.3.5 Verification of Bug Reproduction 61
4.3.6 Identifying Type Specific Information and Edit Actions 63
4.3.7 User Study . 68
4.3.8 User Study Results Analysis 73

4.4 Study Findings . 74
4.4.1 RQ1: Which edit actions are crucial for reproducing deep learn-

ing bugs? . 74
4.4.2 RQ2: What component information and edit actions are useful

for reproducing specific types of deep learning bugs? 82
4.4.3 RQ3: How do the suggested edit actions and component infor-

mation affect the reproducibility of deep learning bugs? 93

iv

4.5 Discussions . 98
4.5.1 Reproducibility of Deep Learning Bugs 98
4.5.2 Challenges in Reproducing Deep Learning Bugs: A Comparison

between Stack Overflow and GitHub 100

4.6 Threats to Validity . 101

4.7 Related Work . 104

4.8 Summary . 105

Chapter 5 Conclusion and Future Work 106

5.1 Conclusion . 106

5.2 Limitations . 107
5.2.1 Limitations of Study 1: Understanding Data Bug Symptoms . 107
5.2.2 Limitations of Study 2: Enhancing Bug Reproducibility 108

5.3 Future Work . 108
5.3.1 Analysis and Verification of Bug Manifestations 108
5.3.2 Improving Bug Reporting . 109
5.3.3 Generating Reproducibility Scripts for Bug Reports 109

5.4 Our Future Research Plan . 110
5.4.1 Minimal Working Example Generator 110
5.4.2 Reproducibility Script Generator 110
5.4.3 Containerized Reproduction Environment 111

Bibliography . 112

Appendix A Supplementary details . 126

A.1 Towards Understanding the Impact of Data Bugs on Deep Learning
Models in Software Engineering . 126

A.2 Towards Enhancing the Reproducibility of Deep Learning Bugs: An
Empirical Study . 126

Appendix B Forms for the User Study 127

B.1 Control Group Form . 127

B.2 Experimental Group Form . 132

v

List of Tables

2.1 Prevalence of different types of deep learning issues 11

3.1 Summary of datasets used in our study 22

3.2 Aggregate metrics for model analysis 26

3.3 Summary of datasets used for validation and generalization . . 26

3.4 Manifestations of data bugs in code-based models 28

3.5 Manifestations of data bugs in text-based models 33

3.6 Manifestations of data bugs in metric-based models 37

4.1 Tags used for filtering different types of bugs 58

4.2 Summary of the constructed dataset 58

4.3 Distribution of participants in the control and experimental groups 71

4.4 Summary of the reproduced bugs 74

4.5 Edit actions for reproducing deep learning bugs 76

4.6 Prevalence of useful information in reproducible issue reports . 85

4.7 Top 3 useful component information for reproducing specific

types of deep learning bugs . 86

4.8 Top 5 edit actions for reproducing specific types of deep learning

bugs . 89

4.9 Percentage of bugs successfully reproduced by control and ex-

perimental group across different sets. 94

vi

4.10 Time taken for bug reproduction by control and experimental

groups . 97

4.11 GLM model for assessing the impact of various factors on the

reproducibility of deep learning bugs 97

vii

List of Figures

1.1 Bug reproduction for deep learning bugs 2

3.1 Schematic diagram of our study 21

3.2 t-SNE plots for models trained on bug-free and buggy data . . 35

4.1 An irreproducible bug from Stack Overflow 53

4.2 A reproducible bug from Stack Overflow 54

4.3 Schematic diagram of our empirical study 55

viii

List of Abbreviations Used

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

CPU Central Processing Unit

CWE Common Weakness Enumeration

DCCNN Dual Channel Convolutional Neural Networks

DL Deep Learning

GAN Generative Adversarial Network

GLM Generalized Linear Model

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

JDT Java Development Tools

JIT Just-In-Time

KL Kullback-Leibler

LLM Large Language Model

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

MPEG Moving Picture Experts Group

PIL Python Imaging Library

ix

RAM Random Access Memory

RCNN Region-based Convolutional Neural Network

RM-ANOVA Repeated Measures Analysis of Variance

RNN Recurrent Neural Network

SO Stack Overflow

SQL Structured Query Language

VGG Visual Geometry Group

x

Abstract

Software practitioners often face challenges when reproducing bugs from deep learning

systems. Recent studies show that only 3% of deep learning bugs are reproducible,

highlighting the inherent difficulties in their reproduction. Deep learning bugs can

stem from many sources – training data, faulty code, hardware issues, framework,

and environment configurations, which makes their reproduction challenging. Fur-

thermore, the inherent non-determinism and data-driven nature of deep learning sys-

tems exacerbate the challenges of bug reproduction. One major challenge arises

from faulty training data, which triggers data bugs. While existing literature docu-

ments symptoms for most types of deep learning bugs, such as API bugs, GPU bugs,

Tensor bugs, and various training and model bugs, there remains a major gap in

understanding the symptoms of data bugs. A better understanding of their symp-

toms will support any attempt to reproduce such bugs. Our first study addresses

this gap by comprehensively investigating how data bugs manifest across three types

of data. Through a systematic analysis of code-based, text-based, and metric-based

benchmark datasets from the software engineering domain, we identify how data bugs

manifest themselves through abnormal model behaviours, training dynamics, and the

model’s internal representations. Building on our understanding of the symptoms

and manifestations of deep learning bugs, we investigate the practical challenges of

reproducing deep learning bugs. In our second study, we collected 668 deep-learning

bugs across three frameworks and 22 architectures. We then manually reproduced

148 bugs and identified ten edit actions and five types of component information that

are essential for bug reproduction. We then use the Apriori algorithm to suggest

useful information and edit actions required to reproduce specific bugs. Finally, our

user study with 22 participants (e.g., developers and researchers) demonstrates that

the suggested edit actions and component information can improve bug reproduction

success rate by 22.92% and reduce reproduction time by 24.35%. Our research not

only enhances the understanding of deep learning bugs (e.g., data bugs) but also

offers concrete edit actions and component information to help reproduce them.

xi

Acknowledgements

First and foremost, I am thankful to the Almighty for granting me the physical and

mental capacities that empower me to pursue my endeavors with purpose and vigor.

I would like to thank my supervisor, Dr. Masud Rahman, who, for the past two

years, has not only been my advisor but also an excellent guide. You have taught

me everything I know about research. When I joined Dalhousie two years ago, I

was an empty book, and in the last two years, you have inspired me with your deep

insights, critical thinking, ability to write and respond to any question or comment in

the right sense, knack for finding the right research questions and directions, and the

list goes on. Despite all the hurdles, the acceptance of my first paper is a testament

to your unwavering support and motivation. I am also deeply thankful to my co-

supervisor, Dr. Foutse Khomh, who has been a constant supporter of my research

and whose expertise has been instrumental in my growth as a researcher. Despite his

busy schedule, he consistently finds time to discuss important ideas, provide feedback,

and check up on ongoing projects. His depth of knowledge and innovative thinking

have contributed significantly to my growth and research. I am particularly grateful

to both Dr. Rahman and Dr. Khomh for allowing me to serve on the organizing

committee for SANER 2025; these experiences enabled me to network with leading

experts in the field and learn more about life in academia. I extend my sincere thanks

to Dr. Tushar Sharma, Dr. Hassan Sajjad, and Dr. Lizbeth Olivia Escobedo Bravo

for their willingness to be on the examining committee and for their feedback on my

work. Their comments helped improve my work significantly, and I deeply value their

time and expertise.

I am profoundly grateful to my parents (Shilpa and Bimal) and my grandparents

(Mammaji and Papaji) for everything they have done for me. They are my everything,

and I aspire to make them proud one day. Words cannot capture my gratitude, and

I doubt they ever will, so I simply say thank you for everything; this journey would

not have been possible without your hard work and faith. I am especially thankful to

my friends in Halifax, beginning with my closest friends, Usmi and Sigma. Usmi has

xii

provided unwavering support throughout all my personal and professional challenges.

She remains my first point of contact for major revisions, paper acceptances, and

both joyful and difficult personal news. She is my cherished lunch break companion,

making it one of the day’s highlights. We have engaged in countless discussions on

both technical and non-technical subjects. We have shared the most wonderful walks

in the harshest weather, yet those walks remain among my fondest memories. I

value her positive attitude, personality, and humour immensely. Most significantly,

her deep understanding of me facilitates our communication, which is the greatest

gift, followed closely by the ZARA perfume and the Bhindi. Sigma has stood beside

me through every challenge and triumph, and we have created the most meaningful

experiences together: exploring Nova Scotia’s beauty, witnessing the Northern Lights,

making coffee runs at Tims, TAing classes, debugging code, writing papers, serving

on DAGS exec, helping each other move, celebrating festivals, and sharing birthdays.

Her friendship is invaluable to me. I am grateful to my friends from the SMART

Lab: Indranil, Saurabh, Gautam and Mootez. Indranil’s engineering excellence is

remarkable, yet it ranks below his exceptional personality, outstanding humor, and

engaging company. Saurabh, our self-proclaimed world citizen, combines remarkable

talent with unmatched humour and musical taste. His research approach continues to

fascinate and inspire me. Gautam, acknowledged as our wisest member, brings joy to

every gathering and maintains admirable composure in stressful situations. Mootez

serves as my trusted advisor on academic and research matters. His brilliant ideas,

knowledge, and work ethic motivate my daily improvement. Despite his expertise, he

readily assists others with genuine warmth, and I have valued our idea exchanges and

collaborative teaching experiences. I fondly recall the FIFA Nights, cricket match

viewings, excellent meals, and wide-ranging discussions at Townhouse 26 with our

former lab members and good friends, Parvez Mahbub and Ohiduzzaman Shuvo.

I am thankful to Lulu, the extraordinary cat, for bringing pure joy to my days.

Additionally, I extend my gratitude to my friends from RAISE Lab - Riasat Mahbub,

Asif Samir, and Jitansh Arora - for their steadfast support throughout my journey.

My acknowledgments would be incomplete without mentioning my two closest

friends - Bhanvi and Aditya. Our eight-year friendship has enriched my life beyond

xiii

words, despite my multiple attempts to express it. I have always maintained that

if I had a sister, it would be Bhanvi. She has supported me consistently through

both triumphs and challenges, and was the first to learn of my PhD acceptance. Her

presence in my life extends far beyond what I can articulate. Regarding Aditya, the

term ’friend’ seems insufficient; he is my brother, and my presence in this PhD pro-

gram is largely attributed to him. I have always considered him the more intelligent,

dedicated, and superior version of myself, and I am fortunate to call him my brother.

He introduced me to true hard work and preparation methods. Our collaborative

exam preparation revealed proper work approaches to me, skills that have profoundly

influenced my research capabilities. Beyond professional development, he remains my

closest confidant, and despite our paths diverging after our Bachelor’s, our connection

has remained unbroken. While I could elaborate extensively on our friendship, I will

simply state: our time in B3-138 and B1-38 represents some of my life’s finest mo-

ments, and neither my undergraduate years nor life itself would have been the same

without you. It has been an honour, my friend. Thank you.

xiv

Chapter 1

Introduction

1.1 Motivation

Software bugs are human-made errors in software systems that prevent them from

functioning correctly. These bugs and failures cause the global economy to lose bil-

lions of dollars annually. Software developers also spend approximately 50% of their

programming time tackling these issues [12, 14]. Recently, deep learning has gained

significant momentum across many application domains, including software engineer-

ing, medicine, and finance. As software systems increasingly incorporate deep learning

components in their workflow, managing their bugs and failures becomes more com-

plex. Deep learning bugs originate from multiple sources, including training data,

model architecture, and hyperparameters [139]. They pose unique challenges and can

lead to severe consequences such as fatal accidents involving autonomous vehicles [135,

1]. Thus, to ensure the quality of software systems using deep learning, understanding

these bugs and failures is essential. However, identifying, reproducing, and correcting

the deep learning bugs remain a major challenge for software practitioners.

A key prerequisite to correcting deep learning bugs is to reproduce them. However,

the reproduction requires a comprehensive understanding of their symptoms or mani-

festations. While existing studies [53, 137] have documented the symptoms of several

types of deep learning bugs, including API, GPU, tensor, and various training and

model bugs, there is a significant gap in the understanding of data bugs. Data bugs

account for 26% of all deep learning bugs [56] and can originate from various sources

such as incorrect labels, duplicates, and missing values [56, 54]. According to a recent

study [34], many benchmark datasets contain up to 70% mislabeled data, causing the

models trained on them to be faulty. Thus, understanding the data bugs, especially

their symptoms and manifestations, is highly warranted to tackle them effectively.

An understanding of the manifestations and symptoms is definitely useful, but

1

2

Figure 1.1: Bug reproduction for deep learning bugs

the bugs also need to be reproduced before their correction. Reproduction helps de-

termine the presence or absence of a reported bug in a software system. However,

according to existing investigations [93], only 3% of analyzed deep learning bugs are

reproducible, which demonstrates the extreme challenges in their reproduction. Deep

learning bugs are difficult to reproduce due to their multifaceted dependencies span-

ning data, hardware, libraries, frameworks, and client programs [21]. The inherent

non-determinism of deep learning systems further complicates the reproduction, as

the same code or model can produce different outcomes across multiple runs [94].

Moreover, deep learning systems suffer from a lack of interpretability [64], which

makes the reproduction of deep learning bugs even more challenging. Recent studies

have provided benchmark datasets containing reproducible bugs (e.g., gdefects4dl,

Defects4ML) [71, 93], but they focus primarily on providing bug instances rather

than their reproducibility. Thus, the reproduction of deep learning bugs, a multi-

step, complicated process (Fig. 1.1), poses open challenges for software practitioners,

AI engineers, and researchers, which warrants further investigation.

1.2 Problem Statement

Over the last few years, researchers have employed various methodologies to detect,

understand, and resolve deep learning bugs automatically. However, despite these ad-

vancements, there exists a significant gap in the understanding and the reproduction

of deep learning bugs. We discuss two such gaps in the literature as follows.

The lack in the understanding of symptoms of data bugs in deep learn-

ing models. Data bugs, the most prevalent type of deep learning bugs [56], pose

unique challenges due to their hidden nature and implicit effects on model behaviour.

Although existing studies [127, 82, 140] have investigated data quality issues, they

have primarily focused on the quality of raw training data, overlooking two crucial

3

aspects. First, the errors in data preprocessing potentially propagate through the

entire development process [10], but their impact on model performance remains un-

derstudied. Second, no existing work comprehensively examines how data bugs affect

the training behaviours of deep learning models. This gap in the literature makes the

understanding of data bugs incomplete, which is essential to reproduce and resolve

them effectively.

The lack of guidance for reproducing deep learning bugs. An under-

standing of bug manifestations and symptoms is crucial, but reproducing deep learn-

ing bugs still remains challenging due to their complex dependencies on data, hard-

ware, libraries, frameworks, and client programs [21]. Recent studies have provided

benchmark datasets containing reproducible bugs [71, 93], but they primarily focus

on dataset construction rather than establishing guidelines for bug reproduction. For

example, while Morovati et al. [93] provided a benchmark dataset of 100 deep-learning

bugs, they did not include crucial reproduction details such as necessary edit actions

and component information for reproduction. As a result, their bugs cannot be repro-

duced using verbatim code snippets, indicating the need for additional information

and specific edit actions. Such a lack of guidance or appropriate tools makes it chal-

lenging for software practitioners to effectively reproduce and resolve deep learning

bugs. To address these gaps in the literature, we ask the following important research

questions:

• RQ1: What are the manifestation patterns and symptoms of data bugs in deep

learning systems?

• RQ2: What are the key challenges and requirements for reproducing deep learn-

ing bugs?

1.3 Contribution

We conduct two separate but complementary empirical studies to address the above

gaps, enhancing the understanding and reproducibility of deep learning bugs. In the

first study, we systematically investigate how data quality and preprocessing issues

(a.k.a, data bugs) manifest themselves during the training of a deep learning model,

4

contributing to their overall understanding. First, we select three types of data for our

analysis based on their frequent use in software engineering tasks: code-based, text-

based, and metric-based data. Second, we select three state-of-the-art baseline models

using these data types and train them with the buggy (containing data bugs) and

bug-free datasets. Third, we capture the detailed training logs of each model using

the Weights & Biases framework [138] and analyze the training metrics and model

properties (e.g., gradients, weights, and biases) to derive meaningful insights. We

compare the gradients, weights, and biases of faulty and fault-free models to identify

symptoms and manifestations of data bugs. When training a model with code-based

datasets (Devign [155] and BigVul [37]), we discover that data bugs manifest through

gradient instability and reduced learning capacity of the model. We also analyze the

model’s attention weights and note significant degradation in its code comprehension

abilities. When using text-based datasets (Eclipse [66] and Hadoop [13]), their data

bugs lead to abnormal weight distributions and overfitting in a model. We also ana-

lyze the representations of the model using t-SNE plots and note that data bugs in

text-based datasets can lead to poor feature representations, which ultimately affect

the downstream task (e.g., duplicate bug report detection). In metric-based datasets

(OpenStack [87] and QT [87]), the symptoms of data bugs manifest as vanishing gra-

dients and poor optimization. We also perform the GradCAM [114] analysis for the

model and observe that the models trained on faulty data focus on irrelevant tokens

and struggle with generalization. All these findings enhance the current understand-

ing of the symptoms and manifestations of data bugs across different contexts in

software engineering. Our findings were also validated by repeating the experiments

with new datasets.

Building upon the understanding of bug manifestations and symptoms, our sec-

ond study focuses on improving the reproducibility of deep-learning bugs. First, we

construct a dataset of 668 deep learning bugs, i.e., 568 from Stack Overflow and 100

from Defects4ML [93]. These bugs span three frameworks and 22 architectures, cat-

egorized into five types: 167 model, 213 tensor, 145 training, 113 GPU, and 30 API

bugs. Second, by using stratified sampling, we select 165 of these bugs and attempt to

reproduce them using the code snippets and complementary information from Stack

Overflow and the benchmark dataset. We found that none of them can be reproduced

5

using the verbatim code provided. Through manual reproduction of the bugs, and by

the analysis of bug reports, we identify ten crucial edit actions and five types of es-

sential component information for the successful reproduction of deep learning bugs.

Third, using the Apriori algorithm, we establish clear associations between the types

of bugs and the edit actions or component information required for the reproduction

of the bugs. These associations deliver important insights and enable us to suggest

items for bug reproduction. Finally, to assess the practical value of our findings,

we conduct a user study involving 22 developers from industry and academia. In

our controlled experiment, the experimental group was equipped with our suggested

guidelines for bug reproduction, whereas the control group worked without such guid-

ance. The experimental group successfully reproduced 22.92% more bugs and spent

24.35% less time compared to the control group. All these results demonstrate the

benefits of our suggested information supporting the reproducibility of deep learning

bugs.

Our research makes several novel and significant contributions to the understand-

ing and reproduction of deep learning bugs. First, we are the first to systematically

analyze and characterize how data bugs manifest during model training across dif-

ferent types of software engineering data (code-based, text-based, and metric-based),

providing detailed insights into models’ gradient behaviours, weight distributions,

and representations. These insights into data bugs are crucial for their reproduction

and thus fill a critical gap in the literature. Second, leveraging our comprehensive

understanding of bug symptoms, we develop the first systematic framework to sup-

port the reproduction of deep learning bugs. Our use of the Apriori algorithm to

establish associations between bug types and key edit actions or component infor-

mation is novel and provides actionable insights for practitioners. Third, our work

is the first to quantitatively demonstrate the effectiveness of reproduction guidelines

through controlled experiments with developers, showing significant improvements

in reproduction success rates and spent time. Finally, our analysis spans multiple

frameworks and architectures, making our findings more generalizable than previous

studies focusing on a specific framework or types of bugs [53, 126].

6

1.4 Related Publications

Our first study is under major revision, and the second study has been accepted by

Empirical Software Engineering Journal. We provide a list of relevant publications

here. In each publication, I am the primary author and have conducted studies under

the supervision of Dr. Masud Rahman and Dr. Foutse Khomh. While I wrote these

papers, the co-authors took part in advising, editing, and reviewing them.

• Mehil Shah, M. Masudur Rahman, and F. Khomh, Towards Understanding

the Impact of Data Bugs on Deep Learning Models in Software Engineering,

Empirical Software Engineering Journal (EMSE), pp. 34, 2024 (Under Major

Revision).

• Mehil Shah, M. Masudur Rahman, and Foutse Khomh. Towards Enhancing

the Reproducibility of Deep Learning Bugs: An Empirical Study. Empirical

Software Engineering Journal (EMSE), pp. 57, October 2024

I also contributed to other studies on deep learning bugs, which are under revision

at the top conferences and journals.

• S. Jahan, M. Shah, and M. Masudur Rahman, Towards Understanding the

Challenges of Bug Localization in Deep Learning Systems”, Empirical Software

Engineering Journal (EMSE), pp. 52, 2024 (Under Revision).

• S. Jahan, M. Shah, P. Mahbub, and M. Masudur Rahman, Improved Detec-

tion and Diagnosis of Faults in Deep Neural Networks using Hierarchical and

Explainable Classification”, 47th IEEE/ACM International Conference on Soft-

ware Engineering (ICSE), pp. 12, 2025 (Under Revision).

1.5 Outline of the report

The report contains five chapters in total. We conduct two separate but complemen-

tary studies to better understand the challenges of reproducing deep learning bugs.

This section outlines the chapters as follows:

7

• Chapter 1 discusses the motivation, problem statements, and research contri-

butions and provides an overview of the report structure.

• Chapter 2 provides a comprehensive background required to follow the rest of

the report, covering topics such as deep learning bugs, deep learning bug reports,

data quality issues, and model explanation techniques.

• Chapter 3 discusses our first study on understanding the symptoms of data bugs

and their impacts on model training.

• Chapter 4 discusses our second study on enhancing the reproducibility of deep

learning bugs.

• Chapter 5 concludes the report with a list of directions for future works.

Chapter 2

Background

In this chapter, we discuss several important concepts required to follow the rest of

the report. First, we discuss deep learning bugs and their different categories: Train-

ing, Model, Tensor and Input, API, and GPU bugs. Then, we discuss bug reports,

root causes and prevalence of bugs, affected stages in the deep learning pipeline, and

bug resolution patterns. We also discuss data quality challenges in software engineer-

ing datasets, including label noise, class imbalance, and data obsolescence. Finally,

we provide an overview of model explanation techniques, including attention-based

analysis, t-SNE visualization, and GradCAM.

2.1 Deep Learning Bugs

Developers often introduce implementation bugs and violate the best practices when

developing deep learning software. While bugs represent actual defects triggering

system failures or incorrect behaviour, the best practice violations are suboptimal

choices impacting performance without causing outright failures. According to ex-

isting literature [54, 56], these issues can be classified into five categories. Table 2.1

shows their prevalence in deep learning systems.

2.1.1 Training Issues

Training Bugs: Training bugs represent implementation flaws that directly impair

the training process. Common bugs include incorrect loss functions that compute

wrong gradients, faulty data augmentation that corrupts training samples, and mem-

ory leaks during batch processing. Implementation errors in optimization algorithms

can lead to incorrect weight updates or gradient calculations. Some bugs manifest as

runtime crashes due to memory mismanagement during training loops, while others

silently corrupt the training process, making models fail to converge [33].

8

9

Training Best Practice Violations: The violations of the best practices in training

lead to suboptimal model performance. These include poor hyperparameter choices

such as inappropriate learning rates or batch sizes, insufficient data preprocessing

like missing normalization, and inadequate training strategies. Using imbalanced

or insufficient training data, failing to implement early stopping, or choosing inap-

propriate optimization algorithms are common violations. While these issues don’t

cause system failures, they result in models with poor generalization or unnecessary

computational overhead [54].

2.1.2 Model Issues

Model Bugs: Model bugs are implementation errors in neural network architecture.

These include incorrect layer connectivity causing broken computational graphs; di-

mension mismatches between consecutive layers, and implementation errors in custom

layers. Such bugs often manifest as runtime or numerical errors in the model’s oper-

ations. For instance, an incorrect implementation of backpropagation in the custom

layers or broken skip connections in residual networks can trigger model bugs, pre-

venting a model from functioning.

Model Best Practice Violations: The violations of the best practices in model

construction involve suboptimal architectural choices limiting model effectiveness.

Examples include selecting inappropriate model types (e.g., MLPs for image tasks),

choosing poor layer configurations, or implementing inefficient network depths. While

these models may train and operate without errors, they fail to capture the underlying

patterns from data effectively. Other violations include unnecessary model complex-

ity, poor choice of activation functions, or inefficient layer arrangements that impact

model performance without causing outright failures.

2.1.3 Tensor and Input Issues

Tensor and Input Bugs: Tensor bugs refer to implementation errors in data han-

dling, such as incorrect reshaping operations that corrupt data structure, wrong in-

dexing that accesses invalid memory locations, or improper type casting causing nu-

merical errors. Input bugs include implementation flaws in data loading pipelines

that corrupt input data, wrong channel ordering, or incorrect data type conversions

10

that cause runtime errors.

Tensor and Input Best Practice Violations: The best practice violations in ten-

sor and input handling include inefficient data preprocessing pipelines, suboptimal

tensor operations that increase computational overhead, and poor input validation

strategies. While these don’t cause system failures, they may result in unnecessary

memory usage, slower processing times, or reduced model robustness to input varia-

tions.

2.1.4 API Issues

API Bugs: API bugs can be triggered by the uses of incorrect implementation of

framework interfaces, such as using incompatible API versions that cause compilation

errors, wrong parameter ordering in function calls, or improper error handling in API

interactions. These bugs often result in runtime errors or undefined behaviour due to

mismatched interfaces or incorrect API usage patterns.

API Best Practice Violations: API best practice violations include using depre-

cated but still functional API versions, adopting inefficient API usage patterns, or

failing to utilize framework optimizations. While these issues don’t cause explicit

system failures, they may result in reduced performance, poor maintainability, or

technical debt.

2.1.5 GPU Issues

GPU Bugs: GPU bugs, as suggested by Jahan et al. [59], are implementation errors

in GPU-related code. These include memory access violations, race conditions in

parallel operations, and incorrect synchronization implementations. Such bugs often

cause system crashes, memory corruption, or incorrect computational results. Im-

plementation errors in GPU device mapping, parallel execution, or memory transfers

represent actual bugs posing significant challenges [112].

GPU Best Practice Violations: GPU best practice violations involve suboptimal

usage of GPU resources without causing outright failures. These include poor memory

management strategies and inefficient parallelization approaches. Moreover, violation

of the best practices can lead to suboptimal data transfer patterns between CPU and

GPU, which results in suboptimal performance [97]. While these violations don’t

11

Table 2.1: Prevalence of different types of deep learning issues

Issue Category Training Model Tensor and Input API GPU

Prevalence 52.5% 19.7% 19.5% 5.3% 2.9%

cause system crashes, they result in performance issues such as increased number of

required memory operations, and reduced computational efficiency [131].

2.2 Deep Learning Bug Reports

To date, only limited investigation has been conducted to understand the patterns of

deep learning (DL) bug reports. Long et al. [77] performed the first exploratory study

to analyze the bug reporting trends and patterns for deep learning frameworks. Their

work revealed several key themes that provide insight into the nature and lifecycle of

these bug reports:

Root Causes and Prevalence: Their study has found that low training speed is

the most common symptom for submitting performance-related bug reports, ranging

from 27% to 67% across the different DL frameworks. However, no consistent pattern

was observed for the root causes of accuracy-related reports. This suggests that

performance issues, especially those manifesting as slow execution speed, are a major

pain point encountered by the users of DL frameworks.

Affected Stages of DL Pipeline: Across the frameworks studied, the training

stage was found to be the most prevalent in performance and accuracy bug reports,

ranging from 38% to 77%. This finding is not surprising, as training is typically the

most computationally intensive and time-consuming stage of the DL pipeline [117].

Performance bottlenecks or accuracy issues encountered during training can signifi-

cantly impact the overall usability and efficiency of the framework.

Report Quality and Resolution: Their study found that a majority of the

closed reports (69% to 100%) were either not classified or their titles, labels, and

content did not match the actual bugs reported. These findings highlight inefficiencies

in bug reporting and difficulties in the resolution process.

12

2.3 Data Quality Issues in Software Engineering Datasets

Label Noise: Label noise refers to errors in the labels assigned to data instances

in a dataset. These errors can stem from various sources, including insufficient in-

formation, annotator mistakes, subjective judgments, and data encoding issues [39].

Label noise is prevalent in real-world datasets and thus can significantly impair the

DL models using those datasets [40]. This issue is also relevant in software engineer-

ing datasets since they are often used to train DL models supporting code search,

vulnerability detection, and program understanding [136, 142, 98]. For example, in a

dataset for vulnerability detection, non-vulnerable code could be mistakenly labelled

as vulnerable or vulnerable code could be labelled as non-vulnerable. Such label er-

rors often result in inaccurate, biased, or flawed models [98]. In this work, we train

multiple deep learning models using datasets containing label noise to determine its

impact on the models.

Class Imbalance: Class imbalance refers to a disproportionate representation

of different classes within a dataset. It is also highly prevalent in various software

engineering datasets, including API recommendation, code review automation, and

defect prediction [55, 132, 119]. For example, in defect prediction, there are often

significantly fewer defective instances than non-defective ones. Existing studies [87,

60, 61, 81] show that only 5%-26% of the files contain the defective instances. When

trained on imbalanced datasets, DL models tend to be biased towards the majority

class and demonstrate poor performance in identifying the minority class [45].

Data Obsolescence: Data obsolescence, also known as concept drift, refers to

the evolution of data over time and is a significant challenge for software engineering

datasets. As software systems evolve, the characteristics of their data change, which

leads to concept drift. This phenomenon is prevalent in many datasets, including the

ones used for log-level prediction, anomaly detection and duplicate bug report detec-

tion [80, 99, 151]. Recent research by Zhang et al. [151] revealed that most duplicate

bug report detection techniques were only evaluated using data up to January 2014.

When these same techniques were applied to more recent data, their performance de-

creased significantly, highlighting the impact of data obsolescence on the effectiveness

of deep learning models.

13

2.4 Model Explanation

Attention-Based Analysis: Attention mechanisms help deep learning models fo-

cus on the most relevant parts of the input [134]. Their inherent ability to assign

importance weights to different input elements can also be leveraged to interpret the

behaviours of the models. Recently, attention weights of input have been used to in-

vestigate the explainability of the deep learning models solving software engineering

tasks [42, 105, 41]. For example, Fu et al. [42] leveraged the self-attention mechanism

to explain the predictions of their proposed technique for vulnerability detection. In

this study, we employ their dataset and attention-based analysis to examine how data

quality and preprocessing issues affect a DL model’s training behaviour and learning

capacity.

t-SNE: t-Distributed Stochastic Neighbor Embedding (t-SNE) [133] is a technique

that can reduce high-dimensional feature representations learned by neural networks

and visualize them in 2D or 3D plots. These plots are often used to inspect how well a

model has learned to differentiate among different classes in the data. By comparing

t-SNE visualizations for different models and examining their separation of classes,

we can evaluate their capacities to learn feature representations for a given task. This

technique has also been used in several software engineering tasks, including duplicate

bug report detection [88]. As duplicate bug report detection is one of our selected

tasks, we utilise t-SNE to explain and visualize the predictions of our trained model

for this task.

GradCAM: GradCAM (Gradient-weighted Class Activation Mapping) is a tech-

nique that visualizes the input features contributing the most to a neural network’s

outputs [114]. By analyzing the feature weights in the final convolutional layer of a

convolutional neural network, GradCAM produces a heatmap highlighting the im-

portant regions in the input relevant to the model’s output. In our study, we employ

DeepJIT [52] as a baseline technique for defect prediction. Since DeepJIT is a CNN-

based technique, we use GradCAM to understand and visualize the impact of input

features on the model output.

14

2.5 Summary

This chapter provided an overview of key concepts essential for understanding the

report. We discussed different types of deep learning bugs (e.g., Training, Model,

Tensor and Input, API, and GPU bugs) and their prevalence. We then explored

bug reports and their characteristics, including root causes and affected stages in

the DL pipeline. We also examined three major data quality challenges in software

engineering datasets: label noise, class imbalance, and data obsolescence. Finally,

we described model explanation techniques, including attention-based analysis, t-

SNE visualization, and GradCAM. The next chapter provides our first study on

understanding the symptoms of data bugs in deep learning systems.

Chapter 3

Towards Understanding the Impact of Data Bugs on Deep

Learning Models in Software Engineering

In this chapter, we investigate how data bugs manifest themselves during the training

of deep learning models targeting software engineering tasks (e.g., defect prediction).

Existing studies suggest that data bugs account for 26% of all deep learning bugs [56],

with some datasets containing up to 70% mislabeled data entries [33]. However, the

current understanding of the symptoms and manifestations of data bugs is limited,

posing significant challenges to their reproduction. In this chapter, we fill this gap

in the literature through a systematic investigation of data bugs from code-based,

text-based, and metric-based data captured from 12 software engineering datasets.

The remainder of this chapter is organized as follows. Section 3.1 provides an

overview of the research problem and our conducted study. Section 3.2 describes

our study methodology and experiment design. Section 3.3 presents our findings on

how data quality issues and preprocessing errors manifest differently across code-

based, text-based, and metric-based data. Section 3.4 discusses the implications of

our findings for bug reproduction and verification strategies. Section 3.5 addresses the

threats to validity. Section 3.6 reviews related work, and finally, Section 3.7 concludes

the chapter with key takeaways and future directions.

3.1 Introduction

Deep Learning (DL) solutions have been widely adopted in many applications, in-

cluding speech recognition [11], software testing [84, 35], autonomous driving [49],

and software development [144]. Compared to traditional logic-driven software, DL-

based software adopts a data-driven computing paradigm where its models are trained

using data. However, the training data can be noisy, biased, or incomplete, which

may lead to unexpected or erroneous behaviours in the DL models [139]. Besides,

15

16

deep learning systems can be very complex and opaque, making it difficult to under-

stand their reasoning process. Thus, the poor quality of training data and the lack

of transparency in the DL models could pose significant challenges to the reliability

and trustworthiness of the DL-based systems.

Software systems are prone to different bugs, which manifest as system failures,

erroneous outputs, or unpredictable behaviours [32]. Similarly, deep learning sys-

tems, while subject to conventional software bugs, also face unique challenges due to

their complex architectures and data-driven paradigms [16]. Their bugs can originate

from various sources, including training data, hyperparameters, and model parame-

ters, and can lead to system crashes and unexpected runtime behaviour [56]. They

can also result in severe consequences, as evidenced by the fatal accidents involving

self-driving cars [135, 1]. Hence, bugs must be identified and fixed before deploying a

deep-learning model in production. However, DL bugs are complex due to the mul-

tifaceted dependencies and non-determinism of DL systems. Their non-determinism

leads to different outcomes across multiple runs, making debugging challenging [94].

Moreover, deep learning systems suffer from a lack of interpretability, which exacer-

bates the challenge in debugging [64].

According to existing literature [56], DL bugs can be divided into five categories:

Data, Model, Structural, Non-Model Structural and API Bug. Among these cate-

gories, data bugs have been reported as the most prevalent ones, accounting for 26%

of all bugs in deep learning systems [56]. They originate from the errors in training

data, such as incorrect labels, duplicates, out-of-distribution records, and missing val-

ues [56, 54, 31]. These errors can significantly affect the model performance [70, 111].

However, resolving the data bugs is highly challenging [147, 136]. Data bugs are

hidden in the dataset and implicitly affect a model’s behaviour. They also propa-

gate to the model parameters during training, which makes their detection difficult.

Furthermore, according to an existing work [34], many existing benchmark datasets

constructed by human annotators contain up to 70% mislabeled data, which leads to

data bugs in the DL models relying on those datasets [34].

Moreover, the lack of understanding of how data bugs manifest during model

training makes it particularly challenging to verify their reproduction. While prac-

titioners can replicate the environmental conditions and code-level issues, they often

17

lack reliable indicators to confirm whether they have successfully reproduced data-

related bugs. Understanding the symptoms and manifestations of data bugs during

training can provide crucial verification mechanisms for bug reproduction, enabling

more effective debugging and resolution strategies.

Existing studies [127, 82, 62, 140, 141, 33] have investigated the impact of data

quality issues (e.g., label noise, class imbalance) on model performance. However,

they primarily focus on the quality of the raw training data and overlook two crucial

aspects: the preprocessing stage and the model training process. First, data prepro-

cessing is essential for preparing the data in a suitable format for training. Errors,

biases, or loss of information during preprocessing can propagate through the whole

development steps of a model, significantly degrading the model’s performance [10].

Despite its importance, the impact of preprocessing on model performance has not

been thoroughly investigated by the existing literature. Second, training is a crucial

step in model development. Observing the training process and monitoring a model’s

internal state, such as gradients, weights, and biases, can offer valuable insights into

how data quality issues affect the model’s learning process. For example, if the model

is experiencing vanishing or exploding gradients, they might indicate poor feature

scaling or outliers in the data [46]. Similarly, analyzing the weights and biases of the

model during training can indicate whether the model is learning meaningful pat-

terns or is being misled by noisy or corrupted data points [63]. Such insights can help

practitioners take appropriate actions to mitigate their impact. However, no existing

work examines the impact of data bugs on the training behaviours of DL models.

Our study aims to address these critical gaps in the literature.

In this chapter, we conduct an empirical study to investigate the impact of data

quality and preprocessing issues on the training of deep learning models used in soft-

ware engineering tasks. First, we select three types of data for our analysis based on

their frequent use in software engineering tasks: code-based, text-based, and metric-

based. Second, we select state-of-the-art baseline models using these data types

and compare their faulty models (containing data bugs) with corresponding bug-free

versions. Third, we capture the detailed training logs using the Weights & Biases

framework and analyze the training metrics and model properties (e.g., gradients,

18

weights, and biases) to derive meaningful insights. We performs quantitative anal-

yses of the gradients, weights, and biases to identify symptoms and manifestations

of data quality and preprocessing issues. Finally, we validate our findings with new

datasets to ensure the generalizability of our results. Thus, we answer four important

research questions as follows:

RQ1: How do data quality and preprocessing issues in code-based data affect the

training behavior of deep learning models?

We investigate the impact of data quality issues from two code-based datasets,

Devign and BigVul [155, 37]. These datasets contain C/C++ functions from mul-

tiple projects and have known quality issues [33]. Our analysis reveals that these

issues cause gradient instability during training and significantly impair a model’s ca-

pacity to capture complex patterns. Furthermore, our attention analysis (extracting

token-level attention patterns, measuring their consistency, validating across samples)

reveals how data quality affects model behaviour, which shows that data quality is-

sues in the code-based data can reduce the code comprehension abilities of the deep

learning model.

RQ2: How do data quality and preprocessing issues in text-based data affect the

training behaviour of deep learning models?

We assess the impact of data quality issues from two text-based datasets, Eclipse,

maintained in Bugzilla and Hadoop, maintained in JIRA. Our study reveals that

quality issues in text data lead to reduced abnormal weight distributions and over-

fitting of models to noisy patterns during model training. Our analysis using the

t-SNE plots highlights the deep learning models’ difficulty learning consistent feature

representations from noisy data.

RQ3: How do data quality and preprocessing issues in metric-based data affect

the training behavior of deep learning models?

We investigate the impact of data quality issues from two metric-based datasets,

Openstack and QT, which frequently suffer from class imbalance problems [87, 52].

Our analysis reveals that quality issues in metric-based data lead to vanishing gra-

dients and poor optimization during the training process. Additionally, we perform

post-hoc analysis using GradCAM, an explainable AI technique for visual analysis

of model inputs. Our analysis demonstrates that models trained on imbalanced data

19

focus on irrelevant tokens and struggle to generalize to unseen data.

RQ4: How well do our findings on data quality and preprocessing issues generalize

to other code-based, text-based, and metric-based datasets?

We evaluate the generalizability of our findings using six new datasets: D2A and

Juliet (code-based), Spark and Mozilla (text-based), and Go and JDT (metric-based).

Our analysis reveals that the data quality and processing issues in the training data

lead to reduced model capacity, gradient instability, overfitting, and biased learning

of the models, which align with our above findings. In contrast, the models trained

on cleaned datasets show none of these issues. Such observations increase confidence

in our findings and underscore the challenges of data bugs in deep learning models

used in software engineering tasks.

3.2 Methodology

Fig. 3.1 shows the schematic diagram of our empirical study. We discuss different

steps of our study as follows.

3.2.1 Data Type Selection

Selecting different types of data is crucial for our study since each data type has

unique characteristics and quality issues. By examining multiple types of data, we

can comprehensively investigate how data bugs manifest and affect deep learning

models. Based on the prevalence in software engineering datasets, Yang et al. [144]

identified the three most prevalent types of data: code-based, text-based, and metric-

based. These data types have unique characteristics as follows.

Code-based data: Code-based data is frequently used in training deep learning

models that target various software engineering tasks, such as code clone detection,

code generation, program repair, and vulnerability detection [42, 149, 68, 129]. This

data type encompasses source code files, test cases, and code changes [144].

Text-based data: Natural language texts play a crucial role in numerous soft-

ware engineering tasks. Existing studies have used text-based data in deep learning

techniques for software engineering tasks [144]. Text-based data includes requirements

specifications, design documents, code comments, commit messages, bug reports, user

reviews, and question-answer posts from forums like Stack Overflow [51, 99, 90].

20

Metric-based data: Metric-based data comprises various statistics derived by

static analysis tools (e.g., SonarQube, Understand) from various software repositories.

They quantify different aspects of source code, software design, development process,

and software quality. Metric-based datasets have been used in several software engi-

neering tasks such as defect prediction, effort estimation, code smell detection, and

software maintainability assessment [52, 74, 29].

Thus, based on the prevalence of data types and their relevance to software engi-

neering tasks, we consider code-based, text-based and metric-based data for our study

(Step 1 , Fig. 3.1).

3.2.2 Study Design

Task Selection

Selecting representative tasks for each type of data above is a critical step in our

analysis (Step 2 , Fig. 3.1). By carefully choosing the tasks that use our selected

data types, we can examine how data bugs manifest and affect the training of deep

learning models. In particular, we have selected the following representative tasks for

our analysis, as suggested by Yang et al. [144]:

(a). Vulnerability Detection: Detection of vulnerabilities in software code is

one of the key applications where deep learning models show promising results. These

models often use source code or binary for their detection task.

(b). Duplicate Bug Report Detection: Duplicate bug report detection is a

prominent use case of text-based data from software engineering that is leveraged by

DL models. The task’s objective is to identify bug reports that describe the same

underlying issue from previous bug reports.

(c). Defect Prediction: Predicting defects in code components using software

metrics is a common application of deep learning in software engineering. This task

involves predicting the defect proneness of software modules based on various code

metrics (e.g., complexity, coupling, cohesion).

21

Figure 3.1: Schematic diagram of our study

Baseline Selection

After selecting the representative tasks, we choose multiple baseline approaches for

the selected tasks. These approaches provide baseline deep learning models, which

are used in our subsequent analysis. To select baselines for each of the types of

data, we used the following criteria: (a) the technique should use a neural network

model to perform one of the three tasks above, and (b) the technique should provide

a comprehensive replication package with source code, datasets, and instructions

for reproducibility. Furthermore, we prioritized the baselines with clean and buggy

versions in their replication packages. Based on these filtration criteria, we selected

the following state-of-the-art baselines for our study.

(a) Code-based data: LineVul [42] for vulnerability detection. LineVul

is a state-of-the-art transformer-based model for line-level vulnerability detection in

code. The model takes code tokens as input and learns to predict the vulnerability

status of each line.

(b) Text-based data: DCCNN [51] for duplicate bug report detection.

DCCNN, short for Duplicate bug report detection using Convolutional Neural Net-

works, employs a CNN-based architecture to identify duplicate bug reports from their

textual descriptions. The CNN model learns to extract relevant features and patterns

from a pair of bug reports and then predict whether they are duplicates or not.

(c) Metric-based data: DeepJIT [52] for defect prediction. DeepJIT

is an end-to-end deep learning framework for Just-In-Time (JIT) defect prediction.

This technique computes software metrics from datasets of code changes and extracts

salient features from commit messages. The learned features from commit messages

22

Table 3.1: Summary of datasets used in our study

Data Type Dataset Size Description

Code-Based
Devign [155] 27,318 functions Vulnerable functions from 5 open-source projects in C/C++
BigVul [37] 188,636 functions Vulnerable code snippets from 211 projects in multiple languages

Text-Based
Eclipse [66] 74,376 bug reports Bug reports from Eclipse project (2001-2007)
Hadoop [13] 14,016 bug reports Bug reports from Hadoop project (2006-2013)

Metric-Based
OpenStack [87] 66,065 source files 21 code metrics per file from OpenStack project
QT [87] 95,758 source files 21 code metrics per file from QT project

and code changes are encoded into numerical matrices and then processed by separate

CNN layers to predict whether the commit will likely introduce a defect.

Besides the relevance to the selected data types, these baselines have demonstrated

state-of-the-art performance in their respective tasks, which justifies their selection

for our study (Step 3 , Fig. 3.1).

Datasets

We utilized six diverse datasets that were used by deep learning models targeting

our tasks above: Devign and BigVul (code-based), Eclipse and Hadoop (text-based),

and OpenStack and QT (metric-based). These datasets vary significantly in size,

composition, and specific characteristics, allowing for comprehensive training and

evaluation of deep learning models across different tasks. For each type of data,

we chose two datasets to perform data source triangulation, per the guidelines by

Runeson et al. [110], and to have multiple sources of evidence as recommended by

Yin et al. [146]. Table. 3.1 provides a detailed summary of each dataset, including

their sizes and brief descriptions, offering a clear overview of the data used in our

experiments.

3.2.3 Experimental Setup

This section describes our experimental methodology, including how we configure our

system, implement the baselines, and observe training behaviours.

System Configuration

To reflect the original environments of our selected baselines, we use the following

setup:

23

(a) Code Editors: We use Visual Studio Code v1.79.0, which is a popular code

editor for building DL-based applications [43].

(b) Dependencies: To automatically detect the API libraries used in the base-

line techniques, we use the pipreqs package 1. We also install the dependencies for

each baseline into a separate virtual environment using the venv 2 module.

(c) Frameworks: We use Tensorflow and PyTorch for our experiments, as Deep-

JIT [52] and LineVul were originally developed in PyTorch, whereas DCCNN was

originally developed in Tensorflow.

(d) Python Version: For our experiments, we use the same versions of Python

originally used by the authors when they published their work.

(e) Hardware Config: Our experiments were run on a Compute Canada node

having a Linux (CentOS 7) Operating System with 64GB primary memory (i.e.,

RAM) and 16GB GPU Memory (NVIDIA V100 Tensor Core GPU).

Baseline Preparation

To prepare the baselines, we utilized the replication packages provided by the authors

of the original studies [42, 52, 51]. This allowed us to accurately reproduce the baseline

setups and maintain the integrity of their original implementations. We prepared

three variants of the original baselines for our analysis, which are described below.

1. Baseline with Clean Data: First, we obtained clean datasets from existing

studies [33, 151, 148] and prepared the original techniques to be trained using this

high-quality data (Step 4 , Fig. 3.1). This variant represents the ideal setup for the

models as it is prepared with clean and high-quality data.

2. Baseline with Buggy Data: To investigate the impact of data quality on

model performance, we created a second variant prepared with data quality issues. We

obtained buggy datasets from the same existing studies [33, 151, 148] and configured

the baseline models to be trained using this buggy data (Step 5 , Fig. 3.1). This

step will allow us to observe how bugs in the training data might affect the model’s

learning process and subsequent performance.

3. Baseline with Missing Preprocessing: For our third variant, we focused

1https://pypi.org/project/pipreqs/
2https://docs.python.org/3/library/venv.html

24

on preprocessing faults, which are among the most prevalent types of faults in deep

learning, according to the existing taxonomy [54]. We removed the preprocessing op-

erations from the training pipeline in preparation for training (Step 6 , Fig. 3.1). By

setting up the model to simulate the missing preprocessing operation, we aim to un-

derstand how the absence of these crucial steps might impact a model’s performance

and robustness.

Integrating Weights and Biases

To better understand the training process and model behaviour, we integratedWeights

and Biases (W&B) logging [138] into the existing baselines and their variants (Step

7 , Fig. 3.1). After successfully integrating W&B, we trained the models and moni-

tored and captured their higher-level training, such as the model’s loss and accuracy

during the training. Additionally, we logged lower-level statistics such as gradients,

weights, and biases from all model layers. This allowed us to track a model’s progress

and performance over time. Furthermore, we logged the runtime configurations to

capture the computational environment in which the experiments were conducted.

Finally, to account for the variability and stochasticity inherent in neural networks,

we ran each baseline model and corresponding variants five times [15].

3.2.4 Quantitative Analysis

To quantitatively analyze the impact of data quality and preprocessing issues on the

deep learning models, we leveraged the data from Weights and Biases (W&B) cap-

tured during the training process. We use the gradients, weights, and biases over

multiple runs and calculate aggregated statistics for each layer of the models (Step

7 , Fig. 3.1). Table. 3.2 discusses the aggregate metrics used for analysis. By exam-

ining these aggregated statistics, we identified symptoms and manifestations of data

quality and preprocessing issues and quantified their impact on deep learning mod-

els. We analyzed the statistical differences between models trained on clean datasets

and those trained on buggy datasets to identify if there were any differences in their

performance. We observed how data bugs and preprocessing issues affected different

layers’ weights, biases, and gradients. By quantifying the impact on specific parts of

the models, such as attention layers, convolutional layers, and fully connected layers,

25

we gained insights into how data quality and preprocessing issues can degrade the

performance and reliability of deep learning models in software engineering tasks.

3.2.5 Post-Hoc Analysis

To gain deeper insights into the impact of data bugs on our deep learning models,

we conducted a post-hoc analysis using explainable AI techniques (Step 8 , Fig. 3.1).

These techniques help us understand how the models make predictions and identify

the influential parts of the input data.

For the code-based data, we analyzed LineVul’s attention weights. Since the

LineVul model is attention-based, an analysis of its attention weights helps us identify

the parts of the input code that the model focuses on when making predictions about

vulnerabilities. By comparing the attention weights from models trained on clean and

buggy data, we observed how data bugs affect a model’s attention and potentially

lead to incorrect predictions.

For the text-based data, we utilized t-SNE (t-Distributed Stochastic Neighbor

Embedding) visualization [133]. t-SNE is a dimensionality reduction technique that

helps us visualize high-dimensional data in a lower-dimensional space. By applying

t-SNE to the representations learned by the DCCNN model at different layers, we

visualized the decision boundary for duplicate and non-duplicate bug reports. This

helps us understand how the learned representations differ between models trained on

clean and buggy data, providing insights into the impact of data bugs on the model’s

learning process.

For the metric-based data, we implemented GradCAM [114]. In the context of

defect prediction using DeepJIT, GradCAM helps us visualize which metrics and parts

of the input features are most influential in the model’s decision. By contrasting the

GradCAM outputs of models trained on clean data against those trained on buggy

data, we identify how data bugs affect the model’s focus and potentially lead to

incorrect defect predictions.

3.2.6 Validating the Derived Findings

To assess the generalizability of our findings from RQ1, RQ2, and RQ3, we conducted

additional experiments using six new datasets not included in our initial analysis

26

Table 3.2: Aggregate metrics for model analysis

Operator Description

max The maximum value of the property in the layer.
min The minimum value of the property in the layer.
median The median value of the property in the layer.
mean The average value of the property in the layer.
var The variance of the property in the layer.
std The standard deviation of the property in the layer.
skew A measure of the asymmetry of the distribution of the property in the layer.
kurt A measure of the peakedness and tail heaviness of the property’s distribution in the layer.
spar The fraction of properties in a layer that are zero or close to zero.

Table 3.3: Summary of datasets used for validation and generalization

Data Type Dataset Size Description

Code-Based
Juliet 253,002 test cases C/C++ and Java test cases covering 181 CWEs
D2A 1,295,623 samples Samples from six open-source projects such as OpenSSL, FFmpeg etc.

Text-Based
Mozilla 193,587 bug reports Bug reports from Mozilla projects
Spark 9,579 bug reports Bug reports from Apache Spark project

Metric-Based
Go 61,224 files Metrics from Go programming language project
JDT 13,348 files Metrics from Eclipse Java Development Tools

(Step 9 , Fig. 3.1). In particular, we chose six new datasets representing three types

of data: two code-based datasets (Juliet and D2A), two text-based datasets (Mozilla

and Spark), and two metric-based datasets (Go and JDT). We collect the buggy and

clean versions of these datasets from the same studies [151, 148, 33], which were used

in our previous steps. Table 3.3 summarises our validation datasets, including their

sizes, compositions, and brief descriptions.

In our validation, we retrained each of the baseline models (LineVul, DCCNN, and

DeepJIT) with their corresponding datasets containing clean and buggy data. We

performed similar quantitative analyses, including monitoring training behaviour and

examining model components. Moreover, we also perform the post-hoc analyses using

the same techniques (attention weight analysis, t-SNE visualization, and GradCAM)

as in our original study. By comparing the results from these validation experiments

with our initial findings, we aimed to determine whether the observed impacts of data

quality issues are consistent across different datasets within each data type, and this

assessed the generalizability of our conclusions.

27

3.3 Study Findings

In our study, we examined the effects of four common data bugs: label noise, class

imbalance, concept drift, and missing preprocessing. To address each research ques-

tion, we constructed and trained a comprehensive dataset of 120 buggy models, with

30 models dedicated to each of the four bug types. Additionally, we trained 30

models on clean data to serve as a baseline, helping us establish the expected train-

ing behaviour. We used the W&B logging framework [138] to capture the training

behaviours of both faulty and baseline models. This section presents our findings,

focusing on the most common symptoms of these data bugs across three data types:

code-based, text-based, and metric-based.

3.3.1 RQ1: How do data quality and preprocessing issues in code-based

data affect the training behaviour of deep learning models?

Impact of Data Quality

(a) Inconsistent Learning: Inconsistent learning in neural networks refers to the

phenomenon where different layers or components of a network learn at varying rates

or effectiveness, leading to suboptimal overall performance [18]. We observe inconsis-

tent learning across the neural network layers when models were trained on low-quality

data. As shown in Table. 3.4, 80% of the models trained on data with label noise and

56.67% of the models trained on data with concept drift demonstrated inconsistent

learning. Our manual analysis of these models shows that ≈20% of their layers were

affected, especially the attention and output layers. Due to the data bugs, these layers

learn very slowly, as shown by their near-zero biases (< 0.01) [95]. In contrast, the

layers unaffected by data quality issues learn quickly (bias >= 0.5). Attention and

the output layers of the models also showed normal bias values (bias >= 0.5). Thus,

the disparity in the bias values across the different layers of a neural network trained

on low-quality code data results in inconsistent learning.

(b) Reduced Model Capacity: We found that models trained on low-quality

data exhibited a reduced capacity to capture complex patterns from data. As shown

in Table 3.4, 86.67% of models trained on data with label noise and 63.33% of models

28

Table 3.4: Manifestations of data bugs in code-based models

Data Quality Issues Inconsistent Learning Reduced Model Capacity Gradient Instability

Label Noise 80.00% 86.67% 73.33%
Class Imbalance 6.67% 23.33% 53.33%
Concept Drift 56.67% 63.33% 16.67%

trained with concept drift demonstrated reduced capacity. Our analysis of these

models revealed that 90-95% of their layers were affected, particularly embedding,

attention, and dense layers. These layers exhibited notably small weights (e.g., µ ≈
0.011, µ ≈ 0.047 for models trained with label noise and concept drift, respectively).

These values were significantly lower than the typical weight values of 0.1 to 0.3, which

were observed when the models were trained on clean data. The small and tightly

clustered weights suggest a limited range in the representational power of a model’s

neurons, which indicates the reduced capacity of the corresponding model [75, 18].

(c) Gradient Instability: We also noted gradient instability when models were

trained on low-quality data. As shown in Table 3.4, 73.33% of models trained on

data with label noise and 53.33% with class imbalance exhibited gradient instability.

Our analysis of these models revealed that 30-40% of their layers were affected, es-

pecially the attention and dense layers. These layers demonstrated extreme gradient

values, ranging from 1× 10−9 to 1× 101, which was a significant deviation from the

range of 1 × 10−3 to 1 × 10−1, as observed in the baseline models trained on clean

data. This wide range of gradient magnitudes leads to unstable learning, where some

layers update their weights rapidly, and others remain almost static. This gradient

instability results in suboptimal model performance, as the model fails to develop a

coherent understanding of code data across all of its layers [100].

Impact of Missing Preprocessing Operations

(a) Slow Convergence: In code-based data, preprocessing operations such as tok-

enization and stopword removal are crucial, as they enable the accurate parsing and

analysis of source code. Our analysis reveals that 66.67% of the models trained with

missing preprocessing operations had slower convergence. We also found that ≈15%

of the layers in these models suffered from slow convergence, especially the output

layers. The slow convergence of the parameters of the output layers indicates that

29

no class was probable enough, which affects the decision-making ability of a model.

Their weights and gradients were close to zero (< 10−6) as opposed to 1 × 10−3 to

1 × 10−1 from the baseline models [24]. Such low gradients and weights often result

in inefficient gradient flow, which affects a model’s ability to converge towards the

optimal parameter values.

(b) Incorrect Learning: We noted that the lack of preprocessing operations in

code-based data led to inconsistent or incorrect learning. Our analysis showed that

the models trained on clean datasets exhibited a uniform and bounded distribution

in their bias values (e.g., ranging from 0.34 to 0.72). Such a distribution enables

better learning and generalization to unseen data [120]. On the contrary, we noted

unbounded bias values in the models trained on data without preprocessing. Some

layers displayed bias values near zero (≈0), while others had bias values exceeding

1.0. This behavior was prevalent in 53.33% of the models trained without prepro-

cessing, affecting ≈60% of their layers. These inconsistent bias patterns indicate

that the models struggle to leverage biases effectively, resulting in a limited set of

learned weights primarily clustered near the origin (≈0). Consequently, this leads to

poor generalization and reduced “guessing power”, degrading the model’s ability to

comprehend and analyze source code effectively [19].

(c) Distorted Distributions: Missing preprocessing steps can significantly dis-

tort the distribution of weights from deep learning models, as suggested by our anal-

ysis. We found that 70% of the models trained without preprocessing were affected.

Our analysis of these models showed that 80% of their layers exhibit distorted distri-

butions, particularly in embedding, attention, and dense layers. They demonstrated

a skewness of > 1 and a kurtosis of |k| >>> 3, which are significantly higher than the

skewness (0.4) and kurtosis (1.3) of the model weights trained on clean data. Such

high skewness and extreme kurtosis indicate that the weights and gradients of an af-

fected model are concentrated at a point farther right from the baseline counterparts.

That is, small changes in input can cause a large change in output, which makes the

model highly sensitive to input changes, reducing its robustness and reliability.

30

Impact analysis of Label Noise using Attention Mechanisms

Attention weights have been effectively used in software engineering research to un-

derstand the correlation between the input and a model’s predictions (outputs) [25].

In our study, we also analyze the attention weights of a model to understand the

impact of data quality issues on the model’s training. Our study examined various

data quality issues, and we found that label noise had the strongest impact on models

trained with code-based data (see Table 3.4). Based on this finding, we decided to

conduct a post-hoc analysis to gain a deeper understanding of how label noise affects

code-based data. To investigate this issue, we trained 60 models in total. We divided

these models into four groups of 15 models each: (a) models trained on a clean De-

vign dataset, (b) models trained on a clean BigVul dataset, (c) models trained on a

Devign dataset with label noise, and (d) models trained on a BigVul dataset with

label noise. For each group, we calculated the average attention weights across all 15

models. This approach helps us identify consistent patterns and mitigate the impact

of non-determinism in deep learning. We discuss our findings below.

Bug-free Data: Models trained on bug-free datasets on vulnerability detec-

tion demonstrate a strong focus on tokens critical for identifying potential security

flaws. This focus is evident in the BigVul dataset, which contains source code from

Chrome, Linux, Android, and Tcpdump. When analyzing models trained on this

dataset, we observe high attention weights on key functions and data structures re-

lated to security vulnerabilities. For instance, rds6 inc info copy (87.3796) and

struct rds incoming (64.1523) receive significant attention, indicating their rele-

vance to network-related vulnerabilities. The models also heavily emphasize network

fields such as laddr (85.7431) and faddr (86.2221), demonstrating their awareness

of potential security issues in network communications. The Devign dataset con-

tains source code from Linux, FFmpeg, Qemu, and Wireshark. Models trained on

this dataset focus on memory-related operations and type conversions, which are

one of the primary causes of security vulnerabilities [123]. Tokens like uint16 t

(88.8645) and uint64 t (86.9365) receive very high attention weights, which reflects

their importance to proper data handling. Critical function calls for cross-platform

compatibility, such as le16 to cpu (82.2068) and le64 to cpu (80.8885), are also

strongly emphasized. Models trained on both datasets show significant attention to

31

error-checking patterns and memory operations like sizeof (30.5034) and if(!conn)

(32.1079). These attention weights suggest the models have developed a comprehen-

sive understanding of code elements related to security flaws from the datasets.

Buggy Data: In contrast, the models trained on buggy data showed their in-

ability to focus on tokens crucial for vulnerability detection. In BigVul, the model

assigns significant weights to non-vulnerable tokens or variables such as int (37.6882),

rt (36.5832), and nl (41.7406). Similarly, in Devign, the model focuses its attention

on various elements like static (50.7911), CCIDBus (55.7003), and Device (43.4922).

In other words, the model fails to prioritize the tokens that might signal potential

vulnerabilities, such as unsafe operations or improper error handling. Moreover, the

models trained on data with label noise pay considerable attention to non-informative

tokens, such as newline characters (26.1465 in BigVul, 54.1878 in Devign) and empty

tokens (8.2194 in BigVul, 10.1193 in Devign). This diffused attention pattern, evi-

dent across both datasets, suggests that these models struggle to distinguish between

benign code patterns and those that may introduce vulnerabilities. This limits their

effectiveness in identifying security-critical code sections.

Summary of RQ1: Models trained on code-based datasets containing data

bugs exhibit many issues, including inconsistent learning across layers, reduced

model capacity and gradient instability. Furthermore, missing preprocessing

can lead to slow convergence, incorrect learning patterns, and distorted distri-

butions, impairing the models’ ability to understand and process code effec-

tively.

3.3.2 RQ2: How do data quality and preprocessing issues in text-based

data affect the training behaviour of deep learning models?

Impact of Data Quality Issues

(a) Abnormal Weight Distribution: We observed abnormal layer weights in the

models trained on low-quality text data. As shown in Table 3.5, 93.33% of the

models trained on data with concept drift exhibited this phenomenon. Our analysis

of these models revealed that 80-85% of their layers were affected, particularly the

32

convolutional and dense layers. These layers demonstrated unusually high weight

variances (e.g., σ2 ≈ 2.3), significantly deviating from their baseline counterparts

(e.g., mean weight variance σ2 ≈ 0.64). The observed abnormal weight distribution

can be attributed to the dynamic nature of text data in software engineering. As

software and technology evolve, the corresponding text-based data also changes, which

causes shifts in the underlying data distribution. This evolution in software and text

can affect how the text is represented, and the relevant weights and biases are learned

by the models. As a consequence, older and newer data points might require different

sets of optimal parameters. During model training, the text data with concept drift

generate large gradient signals to push the parameter values towards the optimal

settings for their respective time periods, which could have led to abnormal weight

distribution in the models.

(b) Gradient Skewness: We also observed significant gradient skewness in the

models trained on low-quality text data. As shown in Table 3.5, 76.67% of the mod-

els trained on data with concept drift and 56.67% with label noise exhibited this

phenomenon. Our analysis revealed that 80-90% of the layers in these models were

affected, particularly the convolutional layers and batch normalization layers. The

gradient distribution of these layers demonstrated substantial skewness (γ ≈ 2.9 for

models trained with concept drift, and γ ≈ 1.2 for models trained with label noise),

far exceeding the baseline skewness values (γ ≈ 0.2). As discussed above, concept

drift in text-based data can lead to large gradient signals during training. This not

only affects weight distribution but also could make the gradients skewed. Large

gradient signals shift the overall distribution towards higher values, causing positive

skewness. Similarly, label noise can also cause gradient skewness. In our datasets

with label noise, similar data points have different labels due to incorrect labelling.

When a model encounters these mislabeled examples during training, it tries to learn

a decision boundary that separates these similar points with different labels, which is

theoretically impossible. This leads to large prediction errors, as the model’s output

significantly differs from the (incorrectly assigned) target labels. These large errors,

in turn, result in large gradient updates during backpropagation. As the training

process continues, these inconsistent and large gradient updates accumulate, causing

the overall gradient distribution to be skewed.

33

Table 3.5: Manifestations of data bugs in text-based models

Data Quality Issues Abnormal Weight Distribution Gradient Skewness Overfitting

Label Noise 16.67% 56.67% 3.33%
Class Imbalance 36.67% 23.33% 86.66%
Concept Drift 93.33% 76.67% 43.66%

(c) Overfitting: We noticed overfitting in the models trained on low-quality text

data. As shown in Table 3.5, 86.66% of models trained on data with class imbalance

exhibited overfitting. Our analysis revealed that 60-65% of the layers in these models

were affected, particularly the dense layers. The median bias value of these layers

(med ≈ 1.1) is much higher than their baseline counterparts (med ≈ 0.07). When

a dataset has a disproportionate number of samples in one class compared to the

others, the model tends to become biased towards the majority class. As a result, the

model’s biases become skewed towards the majority class, which results in the model

overfitting the training data.

Impact of Missing Preprocessing Operations

(a) Numerical Instability: Models trained on raw text data showed clear signs

of numerical instability. According to our analysis, 63.33% of the models exhibited

this issue. From our analysis, we observed that 80-90% of their layers were affected,

particularly in the embedding layers and convolutional layers. These layers showed

extreme weight ranges (-2.16 to 2.54), significantly deviating from the typical ranges

of -0.1 to 0.1 for weights observed in the models trained on the clean dataset. These

extreme weight parameter values indicate potential instability in the models and can

be traced to the lack of proper text preprocessing and tokenization [23]. Without these

steps, the model encounters a high frequency of out-of-vocabulary words, including

typos, rare technical terms, and inconsistent word forms (e.g., different tenses or

misspellings of the same word). As the model attempts to learn representations

for these out-of-vocabulary words, it often resorts to extreme weight adjustments,

particularly in the embedding and convolutional layers, which are responsible for

feature extraction. This leads to high volatility and significant variance in the layer

weights, which results in exploding gradients and numerical instability in the neural

networks [18, 47].

34

(b) Skewed Bias Distributions: Models trained on raw texts demonstrated

significant skewness in their bias distributions. Our analysis revealed that 53.33% of

the models exhibited this issue, with 50-55% of the layers affected, particularly the

convolutional layers. These layers demonstrated high skewness (> 1) and moderate

kurtosis (|k| > 3) in their bias values, which are significantly higher than their baseline

counterparts (skewness = 0.34, kurtosis = 1.82), collected from the models trained

on clean, preprocessed data. This phenomenon can be attributed to the imbalanced

representation of the text data due to a lack of preprocessing operations. Without

tokenization and stop word removal, certain stop words or phrases may appear dis-

proportionately in the dataset. This imbalance directly affects the bias values in the

model. As certain words or phrases occur more frequently, the neurons associated

with these common patterns are activated more often. Consequently, the biases for

these neurons receive more frequent updates during training, pushing them further

from their initial values. In contrast, biases for neurons associated with less common

words or patterns receive fewer updates. This disparity in update frequency leads

to a spread in the bias values, with some shifting significantly and others remaining

closer to their starting points. This results in a skewed distribution of bias values,

which reflects the imbalanced nature of the input data.

Impact of Concept Drift on Decision Boundary

To assess the impact of data quality issues on deep learning models’ training be-

haviour, we also performed a post-hoc analysis using t-SNE plots. First, we trained

30 models on clean datasets and 30 models on datasets containing concept drift. We

selected concept drift for our qualitative analysis, as it affected the highest number of

models (see Table. 3.5). Then, we generated the t-SNE plots for the dense layer rep-

resentations, as shown in Fig. 3.2(a) and Fig. 3.2(c). We focus on dense layers since

their decision boundaries capture complex, non-linear relationships between features

and directly contribute to the final classification. Furthermore, existing literature [88]

has analyzed the t-SNE plots of dense layers in their analysis. We discuss the outcome

of our analysis below. From Fig. 3.2(a) and 3.2(c), we note the impact of concept drift

on the dense layers of our analyzed deep learning models for duplicate bug report de-

tection. In the t-SNE plots, the red points in the graph indicate the representation of

35

(a) First dense layer of models trained on
bug-free data

(b) Second dense layer of models trained
on bug-free data

(c) First dense layer of models trained on
buggy data

(d) Second dense layer of models trained
on buggy data

Figure 3.2: t-SNE plots for models trained on bug-free and buggy data

36

non-duplicate bug reports, and the green points indicate the representation of dupli-

cate bug reports. Moreover, the axes of the graph represent the distance metrics that

result from the t-SNE optimization process. In the first dense layer (Fig. 3.2(a)(a)),

models trained on clean data show a clear separation between the two classes, indi-

cating effective capture of the patterns. On the other hand, models trained on buggy

data (Fig. 3.2(c)(a)) exhibit complex representations with ambiguous decision bound-

aries. This observation is supported by an analysis of KL Divergence, which serves

as the cost function of the t-SNE plot. As the cost function, KL Divergence is auto-

matically calculated and optimized during the generation of these visualizations, with

lower KL Divergence values indicating a better representation of the high-dimensional

data in the 2D space. For the first dense layer, the mean KL divergence for buggy

models (0.32) is higher than that of bug-free models (0.26), indicating more noise in

the layer representation of models affected by concept drift. The second dense layer

(Fig.3.2(b)(b) and Fig.3.2(d)(b)) demonstrates similar trends, with bug-free models

showing well-defined decision boundaries and buggy data models displaying unclear

decision boundaries and fragmented clusters. This trend is further corroborated by

the KL divergence analysis, where buggy models exhibit a mean KL divergence of

0.24 compared to 0.14 for bug-free models in the second dense layer. The increase in

KL divergence for buggy models across both layers (23% in the first layer and 71%

in the second layer) underscores the concept drift’s impact on the network. It also

highlights how concept drift progressively affects a model’s ability to learn meaningful

representations and make accurate predictions, ultimately impairing its performance

in duplicate bug report detection.

Summary of RQ2: Quality issues in text-based data introduce many chal-

lenges for deep learning models, including abnormal weight distribution, gradi-

ent skewness, and overfitting. Moreover, missing preprocessing techniques can

lead to numerical instability and skewed bias distributions, worsening a models’

ability to learn effectively from the bug reports.

37

Table 3.6: Manifestations of data bugs in metric-based models

Data Quality Issues Sparse Parameter Updates Vanishing Gradients Poor Optimization

Label Noise 33.33% 36.67% 23.33%
Class Imbalance 76.67% 83.33% 66.67%
Concept Drift 13.33% 16.67% 10.00%

3.3.3 RQ3: How do data quality and preprocessing issues in

metric-based data affect the training behaviour of deep learning

models?

Impact of Data Quality

(a) Sparse Parameter Updates: We observed sparse updates to the parameters of

neural networks trained on low-quality metric data. As shown in Table 3.6, 76.67%

of models trained with class imbalance exhibited this phenomenon. Our analysis

revealed that 50-55% of their layers were affected, particularly the fully connected

layers. In these layers, up to 85% of the neurons showed no change in their gradi-

ents. That is, 85% of the neurons in a particular layer have not received any updates

and have effectively stopped learning. This phenomenon can be explained by the

disproportionate representation of classes in imbalanced datasets. In such datasets,

the model is exposed to significantly more examples from the majority classes, caus-

ing neurons associated with these classes to receive frequent and substantial gradient

updates. Conversely, neurons detecting minority classes receive updates far less fre-

quently and with smaller magnitudes. As a consequence, a significant portion of

neurons, particularly those responsible for minority class features, become ‘dead’ and

do not contribute to the learning process. Thus, the model struggles to learn repre-

sentations for minority classes, leading to poor performance in these underrepresented

categories.

(b) Vanishing Gradients: We also observed the problem of vanishing gradients

in models trained on imbalanced datasets. As shown in Table 3.6, 83.33% of the

models trained on imbalanced datasets exhibited this phenomenon. In these mod-

els, gradient magnitudes decreased exponentially from the output layer towards the

input layer. Similarly, models trained on corrupted data experienced gradient drops

38

by a factor of 106 between the output and input layers. In contrast, models trained

on clean data showed a moderate drop in gradients, with only a 102 factor decrease

from output to input. As discussed above, class imbalance leads to sparse parameter

updates, which in turn contributes to the vanishing gradient problem. As neurons

associated with minority classes receive infrequent and smaller updates, their gradient

signals become progressively weaker as they propagate backwards from the output

layer through the network. Consequently, the early layers of the network (e.g., input

layers), crucial for learning fundamental features, receive negligible updates for mi-

nority class patterns and suffer from vanishing gradients. This phenomenon severely

impairs a model’s ability to learn from minority classes, further exacerbating the

issues caused by class imbalance.

(c) Poor Optimization: We also noticed poor optimization in the models

trained on low-quality metric data. As shown in Table 3.6, 66.67% of models trained

on datasets with class imbalance suffered from this issue. Our analysis revealed that

the models trained on low-quality data led to a stagnation of loss values after the first

epoch. This contrasts sharply with models trained on balanced datasets, which exhib-

ited steady and consistent decreases in loss throughout training. The average training

and validation loss for models trained on imbalanced datasets was approximately 1.5

times higher than those trained on clean datasets. This trend was consistent across

different software projects. For instance, in the Openstack project, the training loss

value increased from ≈75 for clean data to ≈115 for buggy data. Similarly, in the

QT project, the training loss value rose from ≈110 for clean data to ≈170 for buggy

data. When a dataset has a class imbalance, the model’s corresponding optimization

process is severely affected. The stagnation in loss values, coupled with the vanishing

gradient problem, suggests that the model might get stuck in local minima. As a

result, the model struggles to learn representations for minority classes or refine its

decision boundaries, leading to poor performance.

Impact of Missing Preprocessing Operations

(a) Exploding Gradients: Models trained on raw numerical data showed signs

of exploding gradients. According to our analysis, 66.67% of the models suffered

from this issue. We observed that 70-80% of their layers were affected, particularly

39

in the output layers of the network. These layers showed extreme gradient values

(e.g., from -4.23 to 2.76), significantly deviating from the typical gradient ranges of

-1 to 1 observed in the models trained on properly scaled datasets. These extreme

gradient values can be explained by the lack of appropriate feature scaling and nor-

malization [46]. Without these preprocessing steps, the model encounters features

with vastly different scales, leading to disproportionate weight updates. This leads

to high volatility and significant variance in the gradient magnitudes, which results

in exploding gradients and potential divergence from the normal behaviours in the

neural networks [100, 47].

(b) High Variance in Weight Distribution: Models trained on unprocessed

numerical data demonstrated significant variance in weight distribution. Our analysis

revealed that 53.33% of the models exhibited this issue, with 85-90% of their layers

affected, particularly the input and early hidden layers. These layers demonstrated

high variance in weight magnitudes (σ2 ≈ 5.76), which is significantly higher than

their baseline counterparts (σ2 ≈ 0.89) collected from the models trained on normal-

ized data. This high variance in weight distribution stems from the interaction within

a neural network and the diverse scales inherent in software metrics. For example,

lines of code might be in thousands, while cyclomatic complexity might be in single

digits. During training, the neural network compensates for these scale disparities

to ensure a fair representation of all features in the learning process [67]. It assigns

larger weights to small-scale features (e.g., cyclomatic complexity) to amplify their

effect and smaller weights to large-scale features (e.g., lines of code) to prevent them

from dominating the output. This compensation mechanism results in a wide range

of weight values. The input and early hidden layers are particularly susceptible to

this issue as they directly interact with the raw feature values [67], contributing to

the observed weight variance issue.

Impact of Class Imbalance on Feature Importance

To analyze the impact of class imbalance on the buggy and bug-free models, we apply

the GradCAM (Gradient-weighted Class Activation Mapping) technique [114]. This

approach has been used in previous studies to understand the effectiveness and efficacy

of defect prediction models [148]. For our GradCAM analysis, we used datasets

40

specifically designed for defect prediction, focusing on software metrics. Our dataset

exhibited an imbalanced distribution, with the minor class comprising non-defective

instances and the major class consisting of defective instances. By examining the

GradCAM outputs, we investigate which metrics the models prioritize and how this

focus differs between the two types of models trained on two distinct codebases:

Openstack and QT.

Buggy Models: Our analysis of the GradCAM output for the buggy models

reveals a disproportionate focus on obscure or overly specific tokens across both

codebases. In the OpenStack model, tokens like ‘audit location generator’ (0.9987)

and ‘i62ce43a330d7ae94eda4’ (0.9962) have probabilities very close to 1, while more

general programming concepts like ‘if’ (0.0023) and ‘return’ (0.0041) have proba-

bilities near 0. Similarly, the Qt model exhibits high probabilities for tokens such

as ‘Q OBJECT FAKE’ (0.9976) and ‘qAsConst’ (0.9953), while potentially bug-

indicative tokens like ‘nullptr’ (0.0037) or ‘delete’ (0.0052) have very low probabilities.

This pattern suggests that the severe class imbalance has likely led to overfitting,

causing the models to associate rare, noise tokens, or codebase-specific terms with

software defects in the training data. Consequently, these buggy models may fail to

generalize and capture the broader semantics and context of software defects across

different codebases.

Bug-free Models: In contrast, according to GradCAM output, the bug-free

models focus on a wider variety of relevant technical terms and phrases in both

OpenStack and Qt codebases. For OpenStack, tokens such as ‘vendor-data’ (0.9871),

‘xenapinfs-glance-integration’ (0.9923), ‘live migr-ate’ (0.9905), ‘deprecationwarning’

(0.9889), ‘regressions’ (0.9917), and ‘backward’ (0.9894) have probabilities close to 1.

These terms intuitively relate to areas where bugs occurred in OpenStack code, such

as migrations, deprecations, regressions, and vendor integrations. Similarly, for Qt,

we observe a focus on both framework-specific and general programming concepts.

Tokens like ‘QObject’ (0.9934), ‘connect’ (0.9912), ‘emit’ (0.9901), ‘virtual’ (0.9887),

and ‘override’ (0.9923) have probabilities close to 1. Additionally, memory-related

terms such as ‘new’ (0.9876), ‘delete’ (0.9908), and ‘shared ptr’ (0.9892) also show

high probabilities, reflecting the importance of memory management in C++ code.

41

This observation suggests that the bug-free models learn to focus on both codebase-

specific concepts and general programming patterns that might have historically been

associated with software defects. By mitigating the data quality issues, particularly

class imbalance, these models have developed more generalizable representations that

meaningfully capture the semantics of software defects across different codebases and

frameworks.

The stark contrast in token focus between the buggy and bug-free models high-

lights the significant impact of class imbalance on model behavior. While the buggy

models emphasize seemingly arbitrary or overly specific tokens to learn about software

defects, the bug-free models focus on relevant technical concepts and terms.

Summary of RQ3: The presence of data quality issues in metric-based data

introduces several challenges for deep learning models, including sparse parame-

ter updates, vanishing gradients, and poor optimization. Moreover, inadequate

preprocessing techniques can lead to exploding gradients and high variance in

weight distribution, further hindering the models’ ability to learn from the data

effectively.

3.3.4 RQ4: How well do our findings on data quality and preprocessing

issues generalize to other code-based, text-based, and

metric-based datasets?

To evaluate the generalizability of our findings, we conducted experiments on six

additional datasets: D2A and Juliet (code-based), Spark and Mozilla (text-based),

and Go and JDT (metric-based). We present our findings below.

In code-based datasets, we found that 83.33% of models (25 out of 30) exhibited

inconsistent learning, 86.67% (26 out of 30) showed reduced model capacity, and

76.67% (23 out of 30) experienced gradient instability when trained on data with

label noise or concept drift. For text-based datasets, 93.33% of models (28 out of 30)

showed abnormal weight distribution, 76.67% (23 out of 30) demonstrated gradient

skewness, and 86.67% (26 out of 30) exhibited overfitting when trained on data with

concept drift or class imbalance. In metric-based datasets, 76.67% of models (23 out

of 30) showed sparse parameter updates, 83.33% (26 out of 30) experienced vanishing

42

gradients, and 73.33% (22 out of 30) demonstrated poor optimization when trained

on data with label noise or class imbalance. When models were trained without

appropriate preprocessing of data, we also observed similar patterns across all dataset

types. In code-based datasets, 66.67% of models (20 out of 30) trained without proper

preprocessing showed slow convergence, and 56.67% (17 out of 30) exhibited incorrect

learning. For text-based data, 66.67% of models (20 out of 30) trained on unprocessed

data showed numerical instability, while 56.67% (17 out of 30) exhibited skewed bias

distributions. In metric-based datasets, 73.33% of models (22 out of 30) trained

without preprocessing demonstrated exploding gradients, and 56.67% (17 out of 30)

showed high variance in weight distribution. All percentages observed in these new

datasets align closely with our original findings, varying within a 1-5% margin. These

consistencies in observations across diverse datasets underscore the generalizability

of our findings, highlighting the persistent impact of data quality issues and the

importance of proper preprocessing in model training for software engineering tasks.

Model’s Behaviour on Clean Datasets

After addressing data quality issues and retraining the above models, we observed

significant improvements in model behaviour and performance across all types of

datasets: code-based, text-based, and metric-based. The impacts of data bugs were

significantly diminished, and the models exhibited stable and normal behaviours dur-

ing their training.

In code-based datasets, we found only 3.33% of models (1 out of 30) showing signs

of inconsistent learning, compared to 83.37% previously. Model capacity improved

substantially, with only 6.67% of models (2 out of 30) failing to capture complex

patterns. Gradient stability also increased, with only 10.00% of models (3 out of 30)

demonstrating instable gradients, down from 76.67% in the presence of data quality

issues.

For text-based datasets, the chance of models having abnormal weight distribution

decreased dramatically, with only 6.67% of models (2 out of 30) showing this behav-

ior, compared to 93.33% before. Gradient skewness was largely prevented, with only

10.00% of models (3 out of 30) demonstrating skewed gradient distributions. Overfit-

ting was significantly reduced, with only 6.67% of models (2 out of 30) showing this

43

issue, down from 86.67% previously.

In metric-based datasets, sparse parameter updates were nearly prevented, with

only 6.67% of models (2 out of 30) showing any signs of this issue. The vanishing

gradient problem was significantly mitigated, with only 10.00% of models (3 out of

30) demonstrating this issue. Poor optimization was largely addressed, with only

13.33% of models (4 out of 30) showing this problem, compared to 73.33% previously.

The preprocessing issues, once addressed, also led to substantial improvements

across all dataset types. In code-based datasets, only 6.67% of models (2 out of 30)

showed slow convergence or incorrect learning patterns. For text-based data, only

10.00% of models (3 out of 30) demonstrated numerical instability or skewed bias

distributions. In metric-based datasets, only 13.33% of models (4 out of 30) had

exploding gradients or high variance in weight distribution.

3.3.5 Statistical Signifiance Tests

To assess the generalizability of our findings, we performed statistical significance

tests with the following hypotheses.

H0 : The presence of data quality issues and model

symptoms are independent

H1 : The presence of data quality issues and model

symptoms are dependent

We selected McNemar’s test [102] for the statistical tests due to our experimental

design and paired nominal data, as it specifically evaluates changes in binary out-

comes (presence/absence of symptoms) within the same models. While McNemar’s

test establishes statistical significance to test our null hypothesis that data quality

issues and model symptoms are independent, the odds ratio measures the strength

of their dependence [124]. In our analysis, an odds ratio of 1 would support our null

hypothesis, which indicates that there is no association between data quality issues

and model symptoms. Conversely, odds ratios greater than 1 would support our al-

ternative hypothesis, suggesting that the presence of data quality issues increases the

likelihood of observed symptoms. Moreover, odds ratios below 1 would indicate that

data quality issues decrease the likelihood of model symptoms.

44

McNemar’s test results consistently rejected the null hypothesis across all symp-

toms (p < 0.01). The odds ratios, measuring the strength of association between data

quality issues and symptoms, were substantially greater than 1 in all cases, ranging

from 15.53 for abnormal weight distribution to 806.10 for gradient skewness, strongly

supporting our alternative hypothesis. The most pronounced dependencies were ob-

served in inconsistent learning, gradient instability, and overfitting (p < 0.0001), indi-

cating that these symptoms were exclusively present when data quality issues existed.

Even the weakest association, found in the symptom ”high variance in weight distri-

bution” (p = 0.0098), demonstrated a statistically significant association between the

symptom and data quality issues.

These results demonstrate that addressing data quality issues and applying ap-

propriate proper preprocessing operations to training data can significantly improve

model training for various software engineering tasks. The consistent improvements

observed across different dataset types further validate the generalizability of our

findings and underscore the critical importance of data quality and preprocessing in

machine learning applications for software engineering tasks.

Summary of RQ4: Our findings on data quality and preprocessing issues

generalize consistently across diverse software engineering datasets, including

D2A and Juliet (code-based), Spark and Mozilla (text-based), and Go and

JDT (metric-based). The repeated emergence of similar patterns and enhance-

ments after addressing the data quality issues across multiple datasets increases

confidence in our study findings.

3.4 Implications for Bug Reproduction

Our study on how data quality issues manifest during model training provides several

actionable insights for verifying bug reproduction in deep learning systems:

Training Behavior Validation: Our findings reveal specific manifestation pat-

terns that can serve as verification criteria during bug reproduction attempts. By

monitoring gradient flows, weight distributions, and learning stability during training,

practitioners can validate whether their reproduction exhibits the same behavioural

45

patterns as the original bug. These patterns provide concrete, measurable indicators

to confirm the successful reproduction of data quality issues.

Model State Analysis: The manifestation of data quality issues can be veri-

fied by systematically analysing model states during training. Key indicators include

changes in model capacity, abnormal weight evolution patterns, and unexpected opti-

mization behaviour. By tracking these model state characteristics, practitioners can

determine whether their reproduction accurately reflects the original data quality

problems.

Automated Verification Systems: Our identified manifestation patterns en-

able the development of automated monitoring systems for bug reproduction verifi-

cation. These systems can track critical training indicators such as gradient stability,

feature representations, and learning dynamics. When implemented as part of the

reproduction workflow, these monitoring systems objectively validate whether a re-

produced bug matches the characteristics of the original issue.

3.5 Related Work

Data quality is crucial for the performance and reliability of deep learning mod-

els in software engineering. Previous studies have investigated the effects of data

quality issues like label noise [40, 39, 98, 33], class imbalance [69, 76], data duplica-

tion [151, 33, 78], and concept drift [151, 65, 113] on deep learning models.

Recent studies have also analyzed the impact of data quality issues on deep learn-

ing models for software engineering tasks. Wu et al. [140] investigated mislabeled

instances in five publicly available datasets commonly used for security bug report

prediction, including Chromium, Ambari, Camel, Derby, and Wicket, where they

identified 749 security bug reports incorrectly labelled as non-security. They also re-

ported significant performance improvements for a retrained model that was trained

on correctly labelled data. Tantithamthavorn et al. [127] analyzed over 3,900 issue

reports from Apache projects and demonstrated that label noise can significantly im-

pact the recall of a model. They also reported a significant improvement in the recall

(≈60%) for a retrained model on cleaned datasets. Kim et al. [62] evaluated the

impact of intentionally injected noise into the datasets for defect prediction models

46

through controlled experiments. They found that when ≈30% of the data was mis-

labeled, the performance of defect prediction models decreased significantly, which

highlights the models’ sensitivity to label noise. Fan et al. [38] investigated mislabeled

changes in just-in-time defect prediction datasets and found that certain labelling ap-

proaches can lead to performance reduction of up to 5%. Xu et al. [141] leveraged

adversarial learning to improve the data quality of obsolete comment datasets, which

led to an improvement in the accuracy of multiple existing models by 18.1%. Croft

et al. [33] conducted a systematic analysis of data quality in software vulnerability

datasets and found out that 71% of the labels are incorrect and 17-99% of data points

are duplicated across four state-of-the-art datasets. Furthermore, they also analyzed

the impact of the data quality issues on vulnerability detection. They found that the

model’s performance dropped by 65% when trained on clean data, which shows how

the duplication and mislabelling of the data points can lead to inflated results.

In summary, the existing studies have examined the impact of data quality on

model performance. However, a clear understanding of how these issues affect the

training behaviours of a DL model remains limited. Most existing studies focus on

specific data types or individual quality issues, preventing a comprehensive under-

standing of how data quality impacts deep learning models. Besides, how missing

preprocessing operations can affect model behaviour is not well understood to date.

Our study addresses these gaps in the literature through a systematic analysis of 900

models and 12 datasets targeting software engineering tasks.

Our work investigates how data quality and preprocessing issues affect the train-

ing behaviours of deep learning models. We adopt a comprehensive approach by

examining three major issues - label noise, class imbalance, and concept drift - across

software engineering data in code, text, and metric formats. We also demonstrate the

generalizability of our findings through the reproduction of our findings on separate

datasets, which were not used in our primary analysis. This multifaceted approach

informs us of the impact of data bugs on deep learning models targeting software

engineering tasks, addresses the gaps in the existing literature and encourages future

efforts for appropriate debugging solutions.

47

3.6 Threats to Validity

One potential threat to the internal validity of our findings is the choice of baseline

models and datasets. Although we followed systematic criteria for selection (Section

3.1, Section 3.2), there may be other relevant models or datasets not considered. We

mitigate this threat by carefully documenting our selection criteria and validating

our findings across diverse datasets within each data type category (code-based, text-

based, and metric-based). Another threat is the potential for errors or biases in our

analysis techniques. We mitigate this threat by using analysis techniques which are

well-established in the literature and triangulating our findings through post-hoc anal-

ysis (using XAI techniques) and quantitative analysis (using gradients, weights, and

biases). Another threat is the subjective nature of our post-hoc analysis, particularly

in interpreting attention weights for code comprehension, t-SNE visualizations, and

GradCAM results. We mitigated this by following established guidelines for analysis

from previous studies [148, 42, 88].

The main threat to external validity is the generalizability of our findings to

software engineering tasks or data types that were not those considered. Our analysis

is based on three tasks – vulnerability prediction, defect prediction and duplicate bug

report detection. The impact of data quality and preprocessing issues may manifest

differently in other tasks or application domains. Additionally, we focused on specific

types of data quality issues, which may limit the generalizability of our findings.

To mitigate these threats, we selected prevalent tasks, data types, and data quality

issues based on comprehensive surveys and prior studies [144, 151, 33, 69, 76] and

used established benchmark datasets from different projects and domains.

The primary threat to conclusion validity comes from the inherent stochasticity

in deep learning model behaviours. To account for this, we run each model multiple

times and collectively analyze our findings in an aggregate manner across different

data types and model behaviours, examining patterns in training dynamics (through

gradients, weights, and biases). Our conclusions are drawn from these consistent,

aggregate patterns observed in model behaviours when encountering data quality

issues.

The primary threat to conclusion validity is the potential for statistical errors

or violations of assumptions in our quantitative analysis. While we followed best

48

practices and ran multiple trials to account for stochasticity, there may be inherent

limitations or biases that could affect the accuracy or generalizability of our conclu-

sions. Additionally, our conclusions are based on specific experiments and analysis

techniques, and other approaches or methodologies could yield different or comple-

mentary insights.

3.7 Summary

Data bugs in deep learning systems present a significant challenge, as their hidden

nature and implicit effects make them difficult to identify and reproduce. While

existing studies have examined data quality issues, they have primarily focused on

raw training data, overlooking the critical aspects of data bugs (e.g., preprocessing

errors). To address these gaps, we conducted an extensive investigation into how data

quality and preprocessing errors manifest during the training of deep learning models

across various software engineering tasks. Our analysis captures data bugs from three

prevalent data types: code-based, text-based, and metric-based data, and examines

their manifestation patterns in vulnerability detection, duplicate bug report detection,

and defect prediction tasks. Through a systematic methodology combining state-

of-the-art baselines and explainable AI techniques (e.g., GradCAM), we identified

distinct symptoms of data bugs for each type of data: gradient instability and biased

learning in code-based data, abnormal weight distributions and overfitting in text-

based data, and vanishing gradients with poor optimization in metric-based data.

Our findings not only advance the current state of knowledge but also have signif-

icant implications for deep learning researchers and software practitioners. While an

understanding of how bugs manifest is useful, they also need to be reproduced before

correction, which could be highly challenging. Thus, Chapter 4 focuses on enhancing

the reproducibility of deep learning bugs through an empirical study.

Chapter 4

Towards Enhancing the Reproducibility of Deep Learning

Bugs: An Empirical Study

Bug reproduction verifies the presence or absence of a reported bug in a software

system. Hence, deep learning bugs must be reproduced before their correction. In

this chapter, we investigate the challenges of reproducing deep learning bugs. Exist-

ing studies suggest that only 3% of deep learning bugs are reproducible, indicating

difficulty in their reproduction. However, not many studies were conducted to repro-

duce the deep learning bugs or to understand their reproducibility challenges. This

chapter addresses those gaps by conducting an empirical study and designing effective

guidelines to enhance the reproducibility of deep learning bugs.

The rest of the chapter is organized as follows: Section 4.1 provides an overview

of the research problem and our conducted study. Section 4.2 presents a motivating

example that highlights these challenges. Section 4.3 describes our study methodol-

ogy. Section 4.4 presents our study findings, and Section 4.5 discusses key findings

and actionable insights. Section 4.6 discusses threats to the validity of our study, and

Section 4.7 reviews related literature. Finally, Section 4.8 concludes the chapter.

4.1 Introduction

Deep learning (hereby DL) has been widely used in many application domains, in-

cluding natural language processing, finance, cybersecurity [116, 7, 20], autonomous

vehicles [101, 79], and healthcare systems [36].

Like any software system, deep learning systems are prone to bugs. Bugs in deep

learning systems could arise from various sources, including errors in the dataset,

incorrect hyperparameters, and incorrect structure of the deep learning model [21].

These bugs could lead to program failures, poor performance, or incorrect functional-

ity, as reported by existing literature [57]. They can also lead to serious consequences,

as shown by the fatal crash involving Uber’s self-driving car [135]. Thus, we must

49

50

fix the bugs before deploying a deep learning model in production. However, one

must reproduce the bugs before fixing them to verify their presence/absence in the

system. Unfortunately, reproducing DL bugs is challenging due to deep learning

systems’ multifaceted nature and dependencies, which encompass data, hardware,

libraries, frameworks, and client programs. Furthermore, deep learning systems are

inherently non-deterministic (i.e., random weight initialization), which leads to differ-

ent outcomes across multiple runs and thus makes the reproduction of deep learning

bugs challenging [94]. Moreover, they also suffer from a lack of interpretability [64],

which makes the reproduction of deep learning bugs challenging in comparison to

traditional software bugs. According to existing investigations [93], only 3% of their

analyzed deep learning bugs were reproducible, further demonstrating the challenges

in reproducing DL bugs.

Existing literature investigates the challenges of reproducing programming errors

or bugs from various sources. Mondal et al. [89] investigate the challenges in re-

producing programming issues reported on Stack Overflow and suggest several edit

actions to help reproduce them. Rahman et al. [109] conduct a multi-modal study to

understand the factors behind the non-reproducibility of software bugs. They identify

11 significant factors behind bug non-reproducibility, including missing information,

bug duplication, false positive bugs, and intermittency. Overall, these studies high-

light the challenges in reproducing traditional software bugs but do not deal with any

deep learning bugs, which warrants further investigation.

Recently, a few studies have attempted to tackle the challenges of deep learning

bugs. Liang et al. [71] provide a dataset of 64 deep learning bugs collected from

GitHub issues. They classify these bugs into six categories according to the taxon-

omy of Humbatova et al. [54]. Moravati et al. [93] constructed a benchmark dataset

containing 100 deep learning bugs collected from StackOverflow and GitHub; they

reproduced each of them. Although these studies offer benchmark datasets containing

reproducible bugs, their primary focus is dataset construction. They do not report

any detailed instructions (e.g., sequence of actions) essential to the reproduction of

the deep learning bugs. Our work attempts to fill this important gap in the literature.

In this chapter, we conduct an empirical study to better understand the challenges

in reproducing deep learning bugs. First, we collect a total of 568 DL bugs from Stack

51

Overflow posts. Then, we extend them with 100 DL bugs from the benchmark dataset

of Moravati et al. [93], which makes up our final dataset of 668 DL bugs. Using the

taxonomy of Humbatova et al. [93], we divide these bugs into five categories: 167

model, 213 tensor, 145 training, 113 GPU, and 30 API bugs. Second, by using strat-

ified sampling, we select 165 of these bugs and determine their reproducibility status

by attempting to reproduce them using the code snippet and complementary informa-

tion from Stack Overflow and the benchmark dataset. Third, we manually analyzed

various artefacts such as bug reports, reproduction scripts, follow-up questions, and

thread discussions to determine the categories of information that are useful for re-

producing deep learning bugs. Fourth, we use the information gathered during the

bug reproduction and create a dataset of transactions that link the type of bug with

edit actions and component information. Then, our study establishes connections

among the component information, edit actions, and the type of bugs by employing

the Apriori algorithm [8]. Finally, to further validate our findings, we conducted a

developer study with 22 participants from industry and academia. Half of the par-

ticipants were asked to reproduce bugs using our identified information, while the

other half were asked to reproduce the same bugs without access to that information.

Results from the user study show that our recommended edit actions and component

information can reduce the time to reproduce the bug by 24.35%. Thus, we answer

three important research questions as follows:

• RQ1: Which edit actions are useful for reproducing deep learning

bugs?

Determining the key edit actions that are crucial for reproducing deep learning

bugs is important since almost none of the bugs can be reproduced using the

verbatim code snippet. By manually reproducing 148 deep learning bugs, we

identify ten key edit actions that could be useful to reproduce deep learning

bugs (e.g., input data generation, neural network construction, hyperparameter

initialization).

• RQ2: What types of component information and edit actions are

useful for reproducing specific types of deep learning bugs?

Different types of DL bugs need different types of information or edit actions,

which warrants further investigation. Using the Apriori algorithm, we have

52

determined the top 3 pieces of information and the top 5 edit actions that can

help one reproduce each type of bug. These insights can be used not only to

detect the missing information in a submitted bug report but also to formulate

the follow-up questions soliciting the missing information.

• RQ3: How do the suggested edit actions and information affect the

reproducibility of deep learning bugs?

To assess the effectiveness of our suggested edit actions and component infor-

mation in improving bug reproducibility, we conducted a user study involving

22 professional developers. In our developer study, the participants assigned to

the experimental group used our suggested edit actions and component infor-

mation to reproduce deep learning bugs. In contrast, the participants in the

control group reproduced the bugs without access to the suggested edit actions

and component information. We found that our recommended edit actions and

component information (a) helped the developers reproduce 22.92% more bugs

and (b) decreased their time to reproduce the deep learning bugs by 24.35%.

4.2 Motivating Example

Bug reports or programming Q&A posts might not always provide sufficient informa-

tion to reproduce a deep learning bug. Let us consider the example question shown

in Fig. 4.1(a) [6]. Here, the user attempts to train a neural network using Keras. The

input data type is a Sequence object, which is used as the base object for fitting a

sequence of data, such as a dataset [128] The user aims to pass the training dataset as

a Sequence object to the fit generator() method. However, s/he discovers that their

Sequence object is not recognized by the Keras library. The user also provides a code

snippet to aid the reproducibility of the bug. Unfortunately, the issue cannot be re-

produced since the provided information does not contain the required dependencies

and imports. In Stack Overflow, this question has failed to receive a precise response.

Even though the above code (Fig. 4.1(a)) could be made compilable or executable

using edit actions, the bug cannot be reproduced due to its complex nature. Since

the earlier study [89] does not deal with any deep learning bugs, their suggested edits

might also not be effective.

53

(a) Bug reported by the Stack Overflow User

(b) Answers highlighting the non-reproducibility of the bug

Figure 4.1: An irreproducible bug from Stack Overflow

Let us consider another example question shown in Fig. 4.2(a) [5]. Here, the user

wants to obtain the confusion matrix from a multi-class classification model. Unfor-

tunately, s/he runs into a runtime error, as the confusion matrix() method does not

support multiple output labels. To reproduce this bug, we first generate a synthetic

multi-class dataset since the training data is missing from the question. We also add

the required import statement for the ‘confusion matrix’ function. Then, we initialize

the model hyperparameters based on the code snippet. When we run the code on this

synthetic data, it triggers the same runtime error due to the wrong data shape being

passed to ‘confusion matrix()’. Thus, by extracting the key information and applying

the necessary edit actions, we were able to reproduce the bug. Similarly, this issue

was reproduced by other users of Stack Overflow, and the question received a correct

solution within two hours of its submission, as shown in Fig. 4.2(b). To summarize,

54

(a) Bug reported by the Stack Overflow User

(b) Accepted Answer

Figure 4.2: A reproducible bug from Stack Overflow

55

Figure 4.3: Schematic diagram of our empirical study

by generating a synthetic dataset, adding the necessary import statement, and ini-

tializing the model hyperparameters, we can reproduce the example deep learning

bug. Our study in this article proposes the methodology to extract the information

and determine the edit actions necessary for systematically reproducing deep learning

bugs.

4.3 Study Methodology

Fig. 4.3 shows the schematic diagram of our empirical study. We discuss different

steps of our study as follows.

4.3.1 Selection of Data Sources

We select Stack Overflow as a primary data source for our study. It is the largest

programming Q&A site for programming topics containing over 24 million questions

and 35 million answers [121]. Thus, Stack Overflow could be a potential source

for deep learning (DL) bugs. Developers often submit their encountered problems

on Stack Overflow, when building their deep learning applications. According to a

recent work [154], Stack Overflow contains at least 30 topics and 80K posts related

to deep learning issues, which makes it a potential source for our data. We also select

the benchmark dataset of Moravati et al. [93] (Defects4ML in Fig. 4.3) containing

100 DL bugs as our second source of data. Specifically, we use 63 GitHub issues and

37 Stack Overflow posts from the Defects4ML dataset in our study.

To gather relevant posts from Stack Overflow, we use the Stack Exchange Data

56

Explorer platform1. We employ multiple filters to capture relevant posts discussing

deep learning bugs. First, we select the recent posts (i.e., submitted between May

2020 and May 2023) with the following tags: ‘tensorflow’, ‘keras’, and ‘pytorch’.

These tags were selected since they represent the most frequently used frameworks

for deep learning [150]. This filtration resulted in 14,065 posts for PyTorch, 14,971

posts for Tensorflow, and 3,152 posts for Keras. We then applied the following four

filtration criteria to remove conceptual questions from our collection:

• Keyword Filtering: This filtration removes the how-to questions and the

questions requesting installation instructions. To filter these questions, we use

appropriate keywords (‘how’, ‘install’, and ‘build’), as recommended by Hum-

batova et al. [54].

• Code Snippet: Given our focus on the reproducibility of reported issues, the

questions must include code segments. Therefore, we consider such questions

that contain at least one line of code, as suggested by Mondal et al. [89].

• Accepted Answer: We only select the questions with accepted answers, en-

suring that each reported issue (e.g., DL bug) was reproduced and fixed, as

advised by Humbatova et al. [54].

• Negative Question Score: This filtration helps us discard questions that the

community has found to be of low quality, as proposed by Ponzanelli et al. [104].

We combine all four filtration criteria above, construct a SQL query, and then execute

the query against the Stack Exchange Data Explorer [122]. The SQL query is available

in our replication package [115]. After this filtration step, we obtained a total of 279

posts for Keras, 1,433 posts for Tensorflow, and 1,700 posts for PyTorch. To ensure

the validity of our chosen filtration criteria and confirm that the posts are related to

DL bugs, we conducted a follow-up manual analysis on a representative sample of the

filtered posts. We determined the appropriate sample size using Cochran’s sample

size formula [30]:

n =
Z2 · p · (1− p)

e2

1https://data.stackexchange.com/stackoverflow/query/new

57

Where:

• n = sample size

• Z = Z-value for the desired confidence level (1.645 for 90% confidence)

• p = population proportion (assumed to be 0.5 for maximum variability)

• e = margin of error (0.1 or 10%)

After plugging in the values:

n =
1.6452 · 0.5 · (1− 0.5)

0.12
= 67.65

Therefore, a representative sample of 67 posts was needed to achieve 90% confi-

dence with a 10% margin of error. We chose these parameters to balance the precision

of the estimates with the manual effort required for the analysis. Moreover, higher

confidence levels or lower margins of error would have necessitated significantly larger

sample sizes and analysis time as follows:

• 95% confidence, 5% margin of error: n = 346 posts (86.5 hours)

• 99% confidence, 1% margin of error: n = 2, 832 posts (708 hours)

For each of the 67 sampled posts, we analyzed the entire Q&A discussion thread

from Stack Overflow and the corresponding code changes in GitHub. This manual

analysis took approximately 15 minutes per post, resulting in a total of around 17

hours of effort. We found that ≈96% of the sampled posts discussed deep learning

bugs, confirming the validity of our filtration criteria (Steps 1-2, Fig. 4.3).

4.3.2 Dataset Construction

The above filtration step resulted in 3,412 Stack Overflow posts. To construct our

final dataset, we apply another filter to these posts where we leverage the tags from

Humbatova et al.[54]. We aimed to select representative samples from different types

of deep learning bugs. To reduce the risk of miscategorizing bug types, we selected

tags from Table 1 that exactly matched the leaves of the bug taxonomy proposed

by Humbatova et al. [93]. We identified several Stack Overflow tags that partially

58

Table 4.1: Tags used for filtering different types of bugs

Type of Bug Tags

Model layer, model, activation-function
Tensor tensor
Training loss-function, training-data, optimization, loss,

data-augmentation, performance, learning-rate,
hyperparameters, initialization, imbalanced-data, nan

GPU gpu, nvidia, cuda
API typeerror, valueerror, attributeerror, importerror,

compilererrors, syntaxerror, modulenotfounderror

Table 4.2: Summary of the constructed dataset

Type of Bugs Total Number of Bugs

Model 113
Training 95
GPU 101
API 24

Tensor and Input 193
Mixed 42
Total 568

matched the leaves of the taxonomy. However, to eliminate confusion about bug

types, we only used tags that had an exact match with the taxonomy. Through this

manual analysis of posts, bugs and tags, we selected the tags that best represented

each bug taxonomy/sub-taxonomy from Humbatova et al. [54]. Table. 4.1 shows our

selected 3 tags for model bugs, 1 for tensor bugs, 11 for training bugs, 3 for GPU

bugs, and 7 for API bugs. We look for these tags in the above Stack Overflow posts

and collect 113 Model bugs, 193 Tensor Bugs, 95 Training Bugs, 101 GPU Bugs,

and 24 API Bugs. We also discover 42 bugs belonging to multiple categories (e.g.,

5 Model & Tensor Bugs, 5 Tensor & GPU Bugs, 3 Training & API Bugs). Thus,

the final dataset contains a total of 668 bugs (568 from our dataset + 100 from

Defects4ML [93]) and captures a balanced representation from different types of DL

bugs, as shown in Table 4.2 (Step 3, Fig. 4.3).

4.3.3 Environment Setup

For our experiments, we use the following environment setup:

59

• Code Editors: We use Visual Studio Code v1.79.0 2 and PyCharm 2023.1.1 3

to execute code snippets and reproduce bugs from our dataset. Visual Studio

Code and PyCharm are popular code editors for building DL-based applica-

tions [44].

• Dependencies: To detect the API libraries adopted by the code snippets, we

use the pipreqs package4. We also install the dependencies for each bug into a

separate virtual environment using the venv 5 module.

• Frameworks: Since our dataset contains bugs from Tensorflow, Keras, and

PyTorch, we used all three frameworks in our experiments.

• Libraries: For generating the random inputs and visualizing the training met-

rics, we leveraged several scientific computing libraries such as numpy, pandas,

and matplotlib.

• Python Version: During our experimentation, we used Python v3.10 to re-

produce the deep learning bugs, the latest stable version. If the Stack Overflow

issue reported a Python version other than v3.10, we reproduce the bug using

the mentioned version instead.

• Hardware Config: Our experiments were run on a desktop computer having a

64-bit Windows 11 Operating System with 16GB primary memory (i.e., RAM)

and 8GB GPU Memory (Intel(R) Iris XE Graphics).

4.3.4 Manual Classification of Posts

Before conducting any further analysis, we first determine if each post targets a deep

learning bug. If a post is not related to a deep learning bug, we exclude it from

further analysis. We also excluded the posts not reporting the evaluation metrics

of the buggy model from our study. Without these metrics, it was impossible to

determine if a bug was successfully reproduced or not. This two-step filtering process

helped our analysis focus on relevant and measurable deep-learning bug reports.

2https://code.visualstudio.com/
3https://www.jetbrains.com/pycharm/
4https://pypi.org/project/pipreqs/
5https://docs.python.org/3/library/venv.html

60

Once we confirm that the post is relevant to a DL bug, we check if each selected

post accurately represents the type of bug it is assigned to. To validate the bug

categorization, we manually analyze each selected Stack Overflow post and review the

issue description, stack trace, observed behaviour, expected behaviour, and accepted

answer. This ensures that the tag-based selection of posts from Stack Overflow does

not affect our results’ validity. We perform this manual verification since the Stack

Overflow posts might lack an independently verified category label. In contrast, the

GitHub issues in the benchmark dataset by Morovati et al. [93] already contain a

validated category label.

Reproducing Deep Learning Bugs from Stack Overflow

Once we confirm the category of each post or issue, we follow a two-step approach

to reproduce the deep-learning bugs from Stack Overflow posts. First, we gather

complementary information about each bug, such as the dataset, code snippet, li-

brary versions, and the framework used. Second, we attempt to reproduce the bug

using the code snippet and supporting data (e.g., dataset information, environment

configurations, hyperparameters, and training logs).

Reproducing Bugs from Github Issues

To reproduce the bugs from GitHub issues, we employed a systematic approach. First,

we located the bug-inducing commit of a bug using the commit ID provided by the

benchmark. Next, we cloned the corresponding repository and checked out the buggy

version of the code using the commit ID. We then set up the development environment

according to the reported bug, which may include installing the required version

of the programming language and necessary dependencies or libraries, configuring

environment variables and setting up any necessary databases, services, or external

dependencies the code requires. If applicable, we applied necessary edit actions to the

code, such as modifying specific lines or adding/removing code snippets, to trigger

the buggy behaviour. We then ran the updated code snippet or the specific part

of the codebase where the bug was expected to occur. To verify the presence of a

bug, we compared the observed behaviour with the reported buggy behaviour and

ran the test cases from the existing benchmark (Defects4ML). Finally, if the bug was

61

reproduced, we recorded the edit actions used and critical information necessary for

the bug reproduction.

Agreement Analysis

The first author and one independent collaborator conducted the bug reproduction

process. We first reproduced 10 bugs from our dataset and achieved a Cohen Kappa of

54.5%. Then, we had two meetings to identify the main reasons for our disagreements

and resolved them. In the next round, we reproduced 10 more bugs and achieved a

Cohen Kappa of 89.1%, which is considered an almost perfect agreement [86]. After

achieving an almost perfect agreement, the first author reproduced the remaining bugs

(i.e., 128) while the independent collaborator checked the reproduction, achieving an

average Cohen Kappa of 85.4%. If the first author fails to reproduce the bug within

60 minutes, the independent collaborator also attempts to reproduce the bug. If both

of them failed to reproduce the bug, the bug was marked as irreproducible. We spent

≈280 person-hours on the manual bug reproduction process.

4.3.5 Verification of Bug Reproduction

To verify the successful reproduction of bugs, we employed different strategies de-

pending on the nature of the bugs.

Explicit Bugs

An explicit bug results in an error message or exception. To verify the reproduction

of this bug, we adopted a straightforward approach. We extracted the error mes-

sage from the bug report and attempted to reproduce the bug under the reported

conditions. We considered the bug reproduction successful when the observed error

message matched the error message in the bug report.

Silent Bugs

Silent bugs are also referred to as functional or numerical errors. They do not result in

system crashes or hangs and do not display error messages, but they lead to incorrect

behaviour [126]. We adopted a comprehensive approach to verify the reproduction of

62

silent bugs, as they often manifest subtly through silent issues like slow training or

low accuracy.

We reproduced the silent bugs from Stack Overflow posts and GitHub issues.

Subsequently, we used the evaluation metrics reported in the original posts or issues

as the ground truth to verify the buggy behaviour. In cases where the code snippet

was incomplete, we applied our edit actions to make it compilable, executable, and

runnable.

To determine if a bug was successfully reproduced, we followed these steps:

• We executed the modified code snippet five times, each time with a different

random seed, and calculated the average evaluation metric across these runs.

• We compared the average evaluation metric to the reported evaluation metric

of the buggy model.

• If the average evaluation metric was within a 5% error margin of the reported

metric, we considered the bug to be reproduced.

We selected the 5% threshold for error margin based on the existing literature [103,

9]. Pham et al.[103] found that implementation-level non-determinism could account

for ≈3% variance in the training and evaluation metrics of DL models, often caused by

factors such as parallel processing issues, automatic selection of primitive operations,

task scheduling, and floating-point precision differences. Furthermore, Alahmari et

al.[9] demonstrated that the variance in evaluation metrics could vary from 3% to

7% for models trained using the same dataset and code. Thus, our 5% threshold

accounts for the inherent variability in deep-learning models while still maintaining

a reasonable standard for bug reproduction. This systematic approach allows us

to verify the successful reproduction of silent bugs, ensuring the reliability of our

findings.

Information Collection During Verification

Following the successful reproduction of any bug above, we capture various informa-

tion related to each bug, such as the deep learning architecture involved, edit actions

used to reproduce the bug, time taken to reproduce the bug, type of bug reproduced,

63

and the type of information present in the bug report. All these data gathered during

bug reproduction helped us identify key edit actions and information components to

reproduce specific types of deep learning bugs (Step 4, Fig. 4.3).

4.3.6 Identifying Type Specific Information and Edit Actions

Algorithm Selection

To establish a relationship among the bug types, component information, and the

key editing actions necessary for bug reproduction, we use the Apriori [8] algorithm.

Apriori is a well-known algorithm for mining frequent itemsets from a list of trans-

actions. It helps one identify common patterns and associations between different

elements.

The Apriori algorithm exploits the principle that if an itemset is frequent across

the transactions, then all of its subsets must also be frequent. It starts by identifying

frequent individual items in the dataset and extends them to larger and larger item-

sets as long as they meet certain constraints (e.g., support threshold). The algorithm

terminates when no further successful extensions are found. More specifically, the

Apriori algorithm consists of two main steps: the join step and the prune step. In

the join step, the algorithm generates new candidate itemsets by joining the frequent

itemsets found in the previous iteration. In the prune step, the algorithm checks

the support count of each candidate itemset and discards the itemsets that do not

meet the minimum support threshold. This process is repeated until no more fre-

quent itemsets are generated. In our context, we apply the Apriori algorithm to

analyze the information gathered during bug reproduction. Our goal was to deter-

mine the frequent combinations of bug types and component information, as well

as edit actions during bug reproduction. We leveraged the Apriori algorithm’s sys-

tematic pattern-mining capabilities to establish these relationships. By identifying

the frequent itemsets, we can gain insights into the common patterns and associa-

tions among bug types, component information, and edit actions, which can help us

understand and improve the bug reproduction process.

64

Generating the Transactions

To create our datasets for the Apriori algorithm, we employed a character encoding,

where we encoded all labels into a unique character (e.g., ‘Training Bug’ was encoded

as ‘T’, ‘Model Bug’ was encoded as ‘M’, ‘Obsolete Parameter Removal’ was encoded

as ‘O’) and converted the data into transactions using the following format.

Bug Type → Information Category

Example: T → DH

Description: The transaction above indicates that the reproduced bug is a training

bug (T). The corresponding bug report contains useful information about the bug,

such as the dataset used for training (D) and hyperparameters used by the model

(H).

Bug Type → Edit Action

Example: M → OLN

Description: The transaction above indicates that the reproduced bug is a model bug

(M). To reproduce the bug, we performed three edit actions, as described below:

• Obsolete Parameter Removal (O): We removed some of the parameters that

were absent in the recent library and framework version to ensure that the code

compiles.

• Logging (L): We logged various intermediate program states to verify the bug’s

presence.

• Neural Network Definition (N): We reconstructed the neural network based on

the information provided in the bug report.

Following the specified format, we created two datasets of transactions that asso-

ciate bug types with crucial information and edit actions, respectively. After creating

the transactions, we use the Apriori algorithm to compute the support and confidence

for our generated itemsets and association rules. We talk about these metrics in detail

below.

65

Metrics for Apriori Algorithm

Support is the proportion of transactions in the dataset that contain a particular

itemset. Mathematically, the support of an itemset X is defined as the ratio of

the number of transactions containing X to the total number of transactions. It is

expressed as:

Support(X) =
Transactions containing X

Total number of transactions

For a rule X ⇒ Y , where X and Y are two itemsets, the support is calculated for

the combined itemset X ∪ Y .

Confidence measures the likelihood that a rule X ⇒ Y holds. It is defined as the

ratio of the support of the combined itemset X ∪ Y to the support of the antecedent

itemset X. Mathematically, confidence is expressed as:

Confidence(X ⇒ Y) =
Support(X ∪ Y)

Support(X)

Confidence values range from 0 to 1. A high confidence value indicates a strong

association between antecedents and consequent itemsets.

Definitions for Apriori Algorithm

• Itemset: An itemset is a set of one or more items. In our context, an item can

be a bug type, an information category, or an edit action. For example, {T, D,
H} is an itemset containing three items: bug type T (training bug), information

category D (dataset), and information category H (hyperparameters).

• Transaction: A transaction is a record that contains one or more items. In

our study, we have two types of transactions as follows:

– Bug Type → Information Category: These transactions associate a bug

type with the useful component information for reproducing that bug.

– Bug Type → Edit Action: These transactions associate a bug type with

the edit actions performed to reproduce that bug.

66

• Rule: A rule is an implication of the formX ⇒ Y , whereX and Y are itemsets.

It suggests that if itemset X is present in a transaction, then itemset Y is likely

to be present as well. In our study, rules are generated from the transactions

to establish associations between bug types and component information or edit

actions.

Association Rule Generation

We conducted two separate association rule mining operations in our study - one

focused on component information while the other focused on edit actions used to

reproduce deep learning bugs. The Apriori algorithm generates rules by first identi-

fying frequent itemsets and then creating rules from them. The steps below explain

the process of rule generation with an example.

• Identify frequent itemsets: The algorithm scans the transactions to find

itemsets that occur frequently while satisfying the minimum support threshold.

For example, if the item T, D appears in 20% of the transactions and the

minimum support threshold is 10%, it is considered a frequent item.

• Generate rules: Once frequent itemsets are identified, the algorithm generates

rules from them. For each frequent itemset, the algorithm creates rules by

splitting the itemset into antecedent (left-hand side) and consequent (right-

hand side). For example, from the item T, D, H, the following rules can be

generated:

– T ⇒ D,H

– D ⇒ T,H

– H ⇒ T,D

– T,D ⇒ H

– T,H ⇒ D

– D,H ⇒ T

• Calculate confidence: For each generated rule, the algorithm calculates the

confidence value. Confidence measures the likelihood that the consequent item-

set appears in a transaction given that the antecedent itemset is present. Rules

67

with confidence values above a minimum threshold are considered strong asso-

ciations.

In particular, we extracted 27 itemsets and 34 rules for component information, high-

lighting the useful information for reproducing deep learning bugs. Similarly, we ex-

tracted 126 itemsets and 284 rules for edit actions, capturing the edit actions needed

to reproduce bugs. We generated association rules based on the entries in our dataset

and did not filter or remove any rules before determining confidence values. We then

calculate the confidence values for all generated rules to identify the most influential

ones for connecting bug types with edit actions and useful information.

Computation of Confidence Values for the Generated Association Rules

As discussed earlier, support indicates how frequently a rule occurs, while confidence

indicates the generality of the rule. To compute the confidence values for each asso-

ciation rule, we performed the following steps:

• Calculate Support for Antecedent (X): We calculate the support for the

antecedent, which is the bug type in our case (e.g., ‘T’ for Training Bug or ‘M’

for Model Bug). Support for X is the proportion of all transactions that contain

the specific bug type.

• Calculate Support for Combined Itemset (X ∪ Y): We then calculate

the support for the combined itemset, X ∪ Y , which includes both the bug

type and the information category or edit action (e.g., ‘T ∪ H’ for Training

Bug associated with Hyperparameter Information, or ‘M ∪ O’ for Model Bug

associated with Obsolete Parameter Removal).

• Compute Confidence for the Rule (X ⇒ Y): The confidence of the rule

X ⇒ Y is computed by dividing the support of the combined itemset X ∪Y by

the support of the antecedent X. This step gives us the confidence value, which

indicates how often the information category or edit action Y is associated with

the bug type X in our transactions.

For example, consider the rule T ⇒ D. This rule indicates that if the type of bug is a

‘Training Bug’ (T), it can be reproduced by the edit action ‘Input Data Generation’

68

(D). To calculate the confidence of this rule, we count the number of transactions in

which the training bug is reproduced by using the edit action ‘Input Data Generation’

and divide this count by the total number of transactions involving training bugs in

the dataset.

Identification of High Confidence Associations

We use high confidence and support values to detect the rules that reliably capture

the core factors necessary to reproduce specific types of deep learning bugs. Based

on these high-confidence rules, we identify the top 3 pieces of useful information and

the top 5 edit actions used to reproduce each bug type. The decision to select three

useful pieces of information and five edit actions was influenced by two key factors.

First, we adhere to the Parsimony Principle [48], which suggests that selecting the

simplest set of rules is preferable when multiple rules can predict or describe the same

phenomenon. We thus concentrate on the most significant factors by selecting the

top 3 and top 5 rules for edit actions and useful information, respectively. Second,

we filter the rules based on minimum confidence values of 30%, as suggested by Liu

et al. [72]. With our limited dataset, a 30% confidence threshold can indicate a

substantial pattern since finding associations in 30% of cases points to a meaningful

correlation given the data size. Furthermore, the 30% minimum confidence helps filter

out spurious correlations with small datasets that can occur by chance. Therefore,

for our dataset, the selected threshold strikes an effective balance - it is high enough

to identify meaningful associations in the data while eliminating noise from false

correlations. Overall, this filtration left us with 23 rules for edit actions and 20 for

useful information. Focusing on these high-confidence, high-support rules can reveal

the patterns that reproduce deep learning bugs (Step 5a, 5b, Fig. 4.3).

4.3.7 User Study

To assess the benefits and implications of our findings in a real-life setting, we conduct

a user study involving 22 developers (10 from academia + 12 from industry) (Step 6,

Fig. 4.3). We discuss our study setup, including instrument design and participation

selection, as follows:

Instrument Design: We used Opinio, an online survey tool recommended by our

69

institution, to construct and distribute our questionnaire. Opinio enabled us to track

the time spent by the participants on each individual question, which proved to be

useful for our further analysis. The use of Opinio also did not require any additional

effort from the participants, which made it a suitable choice for our user study. We

divided our questionnaire into three sections. We discuss them in detail below:

• Introduction: We first summarize our findings on the reproducibility of deep

learning bugs to provide the participants with the necessary context and back-

ground information. For the survey itself, we do not give the respondents a

fixed time to complete it, but we specify that it should take ≈60 minutes on

average; this number was derived from our pilot study. This was done to ensure

that the respondents do not work under time pressure. Since the participants

have different levels of experience, allocating a fixed time for bug reproduction

might affect our results.

• Demographic Information: After providing the contextual information about

our study, we collect demographic information from developers (e.g., experience

bug fixing in deep learning frameworks). We then ask the developers to elab-

orate on the challenges that they face when reproducing deep learning bugs in

their daily lives.

• Questionnaire Preparation: First, we select eight bugs (2 Tensor, 2 API,

2 Model, and 2 Training Bugs) from our dataset constructed during manual

bug reproduction and dataset creation. During this process, we categorized

the bugs by difficulty level and type based on the number of edit actions and

critical information required to reproduce them. We use stratified random sam-

pling to pick 2 bugs from each type; one of the bug types is relatively easy

to reproduce with only 1 edit action, and the other type is relatively difficult

to reproduce warranting multiple edit actions. We pick 8 bugs following this

approach and, then randomly assign them to four sets, each containing 1 easy

and 1 difficult bug. Second, we provide the users with the issue description

and the code snippet from the original Stack Overflow post. We also provide a

Google Colaboratory notebook containing the code for sample edit operations

to aid the bug reproduction process. Finally, we include a free-text box in the

70

form to allow users to share any additional information about edit actions not

covered in our study. Our complete study form, which contains the instructions

provided to the participants, is present in Appendix B.

Study Session: During our study session, each participant completes the follow-

ing five tasks. First, the participant provides their demographic information. Second,

the participant explains their daily challenges when reproducing deep learning bugs.

Third, each participant reproduces two deep learning bugs and self-reports the edit

actions and information they used to reproduce the bugs. Fourth, the participant

also provides the rationale behind their self-reported edit actions and component in-

formation used to reproduce the bugs. Finally, the participant provides information

about any other edit actions that they might have used to reproduce the bugs but

are not covered in our study.

Participant Selection: We first conducted a pilot study with two researchers

and two developers. Based on their feedback, we rephrased ambiguous questions and

added sample code to aid the manual bug reproduction by the users. Incorporating

this constructive feedback enabled us to refine and improve the quality of our final

questionnaire. Then, we invite professional developers and researchers with relevant

deep learning experience to our study. We send our invitations to the potential

participants using direct correspondences, organization mailing lists (e.g., Mozilla

Firefox), and public forums (e.g., LinkedIn and Twitter). A total of 22 participants

responded to our invitations. Out of them, 10 (45%) came from academia, and 12

(55%) came from industry. In terms of bug-fixing experience with deep learning bugs,

14 participants (63.63%) had 1-5 years of experience, 4 (18.18%) had 5-10 years of

experience, and the remaining 4 (18.18%) had less than one year of experience. In

terms of deep learning frameworks, 19 participants (86.34%) reported having working

experience with Tensorflow, 21 (95.45%) reported experience with PyTorch, and 20

(90.91%) reported experience with Keras. All these statistics indicate a high level of

cross-framework expertise within our participants.

Defining Control and Experimental Groups: We carefully divided the study

participants into control and experiment groups, as shown in Table. 4.3. Using these

two groups, we wanted to assess the benefit of our recommended information in

the context of bug reproduction. The control group receives no hints about how

71

to reproduce a bug. In contrast, the experimental group receives hints (e.g., useful

information, edit actions) that could help them reproduce a bug.

Ensuring Similar Experience Levels: Our guiding principle was to ensure

that both groups had a similar distribution in their relevant experience. Specifically,

we surveyed all the developers about their experience and used a stratified random

sampling approach to assign them to the two groups. This randomization allowed us

to minimize potential bias and confounding factors across the groups.

Table 4.3: Distribution of participants in the control and experimental groups

DL Experience Developers in Control Group Developers in Experimental Group

<1 Year 3 (27.27%) 3 (27.27%)
1-5 Years 6 (54.54%) 5 (45.45%)
5-10 Years 2 (18.18%) 3 (27.27%)

Leveraging Associations to Produce Hints for User Study: We use high-

confidence associations from our RQ2 (Step 3.6.6) to develop hints for our user study.

These associations revealed the edit actions and critical information needed to re-

produce specific types of bugs. We use the steps below to construct the hints in a

systematic way for our user study.

1. Bug Categorization:

(a) Analyze the information found in a bug report to identify the specific type

or category of the bug.

(b) Use the identified bug category to retrieve relevant component information

and edit actions.

2. Retrieve component information and edit actions:

(a) Based on the identified bug category, retrieve the top 3 components and

top 5 edit actions from the findings of RQ2.

(b) The component information includes the most important aspects required

to reproduce or understand a bug (e.g., shape of input data, training code,

error messages).

(c) The edit actions refer to the most frequently associated actions to a specific

bug category.

72

3. Determining the Most Relevant Statement: We also collect the most

relevant statement from the bug description as follows.

(a) Split the bug report’s text into a list of sentences using ’.’ as the delimiter.

(b) Collect a list of key phrases for the components retrieved in Step 2(a).

These key phrases are derived from our qualitative analysis of the bug

reports and can be found in the replication package [115].

(c) Generate the Sentence-BERT embeddings for every statement in the bug

report and the keywords above using the ’sentence-transformers/all-MiniLM-

L6-v2’ pre-trained model.

(d) For each statement in the bug report, calculate the cosine similarity be-

tween the statement embedding and the embeddings of the keywords.

(e) Identify the relevant statement for the most prevalent component (i.e., top

component from Step 2(a)) based on their cosine similarity score.

(f) Prepare a context-specific hint that guides the user to a particular state-

ment using the following template: ‘Focus on the statement: <Statement

extracted in Step 3(e)>’

4. Hint Formulation:

(a) Combine the retrieved component information and edit actions from the

research findings with the context-specific hint to formulate the complete

hint for the user study.

(b) Use the template below to formulate the hint for each bug.

Template for Hint Generation

Hints

1. <CI1>, <CI2>, <CI3> can be useful information for reproducing the bug.

2. <EA1>, <EA2>, <EA3>, <EA4>, <EA5> can be useful edit actions for

reproducing the bug.

3. Focus on the Statement: “<Most Relevant Statement from the SO

Post>”

73

We ensure a systematic formulation of hints for our study by following the steps

above. This approach incorporates high-confidence associations from Step 3.6.6 and

the bug description for individual bug. With this intervention, we plan to measure

if and how our recommended information help participants reproduce the bugs more

accurately or quickly. The code and results for the hint formulation are available in

our replication package [115].

4.3.8 User Study Results Analysis

To assess the effectiveness of our edit actions, we analyze the participants’ responses

and open-ended feedback. Specifically, we analyze the edit actions used by the par-

ticipants and compare them with those used in our manual bug reproduction process.

If similar edit actions were used, it would indicate that our recommended edit actions

and component information were effective in the reproduction of the bugs.

In our user study, the participants first reproduce their assigned bugs and report

the information or actions they used to reproduce their bugs. To analyze the effec-

tiveness of our recommended information, we compare the control and experimental

groups in terms of their success rates in bug reproduction and the time taken to

reproduce the bugs. We select bug reproducibility rate and time taken for bug re-

production as our key metrics to evaluate the effectiveness of our findings. These

quantitative metrics directly measure how successful and efficient our recommended

information is in assisting the developers to reproduce deep learning bugs. Higher

reproducibility rates and reduced reproduction times in the experimental group com-

pared to the control group would indicate that our findings are effective for improving

deep learning bug reproducibility. We also analyze the open-ended feedback from the

participants using thematic analysis to determine if our provided hints were useful or

not. We also analyze them to uncover new insights into deep learning bug and their

reproduction.

By analyzing the results from our user study, we establish quantifiable patterns

and trends in deep learning bug reproducibility. Through developers’ open-ended

feedback, we identify key challenges and practical solutions that improve debugging

practices. The user study results and feedback also provide information about the

effectiveness of our recommended actions for bug reproduction. This enables us to

74

Table 4.4: Summary of the reproduced bugs

Type of Bug Bugs Reproduced Model Architectures Covered

Training (T) 50 CNN, LSTM, AutoEncoder, MLP, RCNN,
ResNet

Model (M) 42 BERT, CNN, GMM, LSTM, MLP
VGG16, Transformers

API (A) 20 CNN, GAN, MLP, Transformers, VGG19,
Variational RNN

GPU (G) 3 -
Tensor and Input (I) 29 CNN, GAN, Logistic Regression, MLP, ResNet
Mixed (X) 4 CNN, BERT, MLP

deliver novel and actionable insights regarding the current state of deep learning bug

reproducibility based on empirical evidence (Step 7, Fig. 4.3)6.

4.4 Study Findings

In this section, we present the findings of our study by answering three research

questions as follows.

4.4.1 RQ1: Which edit actions are crucial for reproducing deep learning

bugs?

To answer the first research question, we worked with 165 bugs and successfully repro-

duced 148 bugs of different types and architectures. Table. 4.4 briefly summarizes our

reproduced bugs. Through our comprehensive reproduction process, we identify ten

edit actions that are crucial for reproducing deep learning bugs. Table. 4.5 shows the

identified actions from our qualitative analysis. We explain these actions as follows.

Input Data Generation (A1) is one of the key edit actions for reproducing

deep learning bugs. This action involves programmatically generating synthetic in-

put data that closely matches the characteristics of the original data used for training

the model. The key objective of input data generation is to simulate representative

data that can trigger or reproduce the erroneous model behavior described in the bug

report. This allows for the reproduction of issues that manifest only in the presence

of specific data properties or distributions. To perform input data generation, we

leverage any details about the data that are provided in the bug report, such as data

6This study was approved by Dalhousie’s Research Ethics Board (REB Approval #2023-6890)

75

types, value ranges, shapes, distributions, preprocessing steps, etc. For example, for

image data, the report may specify that inputs are RGB images of size 224x224x3 with

pixel values normalized to [0,1]. Similarly, for text data, the description may indicate

sequences of 512 tokens processed using a particular tokenizer. Using this informa-

tion, we can systematically generate synthetic data matching the properties through

appropriate library functions. For images, we can use libraries like OpenCV [2] or

PIL [4] to construct random images of the required size and channels. For text, we can

sample token sequences from a standard corpus or use specialized generative models

like GPT-2 [107]. Our manual bug reproduction shows that ≈73% of our collected

posts from Stack Overflow have the relevant data characteristics. Let us consider

the issue reported in the Stack Overflow post (Issue #61781193). In this post, the

reporter suspects that the model is not learning - as evidenced by the constant train-

ing loss across the epochs. The following text from the post shows how the reporter

might submit the input data distribution.

R: My training data has input as a sequence of 80 numbers in which each represent

a word and target value is just a number between 1 and 3.

Using this information, we generated the random input data as follows and were

able to reproduce the corresponding bug.

train_data = torch.utils.data.TensorDataset(torch.randint(0, 200, (1000, 80)), torch.

randint(1, 3, (1000 ,)))

Neural Network Construction (A2) was one of the most used edit actions

during our bug reproduction. In this edit action, we construct a neural network based

on the architecture provided by the reporter. Similar to the data characteristics, the

information about the neural network is present in ≈65% of the reproducible issue

reports. Using the neural network description from the issue reports, we were able to

construct the models. Let us consider the issue reported in the Stack Overflow post

(Issue #63204176). In this post, the reporter submits an issue where a CrossEntropy

loss function within a loop is overwritten with a Tensor, causing a TypeError in later

iterations. When we analyze the post, we find that the reporter mentions that they

have used a logistic regression model (1-layer neural network with a sigmoid activation

function [85]). However, the reporter does not provide the code snippet necessary for

reproducing the bug.

76

Table 4.5: Edit actions for reproducing deep learning bugs

Edit Action Overview

A1: Input Data Generation (D) Generating input data that simulates
the data used for training the model.

A2: Neural Network Construction (N) Reconstructing or modifying the neu-
ral network based on the information
provided.

A3: Hyperparameter Initialization (H) Initializing the hyperparameters for
training, such as batch size and num-
ber of epochs.

A4: Import Addition and Dependency Res-
olution (R)

Determining the dependencies in the
code snippet and adding the missing
import statements.

A5: Logging (L) Adding appropriate logging state-
ments to capture relevant information
during reproduction.

A6: Obsolete Parameter Removal (O) Removing outdated parameters or
functions to match the parameters of
the latest library versions.

A7: Compiler Error Resolution (C) Debugging and resolving compiler er-
rors that arise due to syntactic errors
in the provided code snippet.

A8: Dataset Procurement (P) Acquiring the necessary datasets and
using them to train the model.

A9: Downloading Models & Tokenizers
(M)

Fetching pre-trained models and tok-
enizers from external sources.

A10: Version Migration (V) Updating code to adapt to changes in-
troduced in newer versions of libraries
and frameworks.

R: I am trying to write a simple multinomial logistic regression using mnist data.

To reproduce the bug, we constructed multiple logistic regression models for the

MNIST dataset, as highlighted in the post. We added the import statements, wrote

the code to load the MNIST dataset, and completed the code. Using the training

loop’s code snippet from the original code and our edit actions, we could complete

the code snippet and reproduce the bug successfully. Using this partial information,

we constructed multiple multinomial logistic regression models, and despite the lack

of relevant code examples, we successfully reproduced the corresponding bug.

77

Hyperparameter Initialization (A3) is one of the core edit actions for re-

producing deep learning bugs. As a part of this edit action, we initialize various

hyperparameters (e.g., number of epochs, batch size, optimizer) for training the neu-

ral networks. Sometimes, the reporter did not provide these configurations, and we

had to initialize them using default parameters to reproduce the bug. This is further

evidenced by the fact that only ≈53% of our collected posts from Stack Overflow

have information about the hyperparameters. Let us consider the issue reported in

the Stack Overflow post (Issue #31880720), where the author gets a poor test ac-

curacy of 13.9% when training a neural network on a synthetic binary classification

dataset. After manual analysis of the post and the code snippet, we observe that

some of the hyperparameters in the code snippet have not been initialized.

model.fit(X_train , Y_train , batch_size=batch_size , nb_epoch=nb_epoch , show_accuracy=

True , verbose=2, validation_data =(X_test , Y_test))

To reproduce the bug, we initialized the batch size with commonly-used values

{32, 64, 128} and the number of epochs ranging from 1 to 10. Since we initialized

these hyperparameters, we ran the edited code snippet five times to confirm the effec-

tiveness of our edit operation. We were able to reproduce the bug in all five iterations.

We performed the steps mentioned above for all 56 bugs involving hyperparameter

initialization.

Import Addition and Dependency Resolution (A4) are one of the most

common edit actions for all types of bugs. In this edit action, we analyze the code

manually and determine the dependencies required for the code snippet to run. Then,

we install the dependencies and manually import them to complete the code snippet.

This edit action was also used to reproduce traditional software bugs, as reported

by Mondal et al. [89]. In the Stack Overflow posts we collected, ≈47% of the issue

reports lacked the required dependency information. This significant absence of the

dependency information further highlights the need for our suggested edit action.

Let us consider the issue reported in the Stack Overflow post (Issue #50306988). In

this post, the neural network model with softmax activation struggles to fit a simple

2-feature classification dataset, converging extremely slowly compared to logistic re-

gression, which achieves 100% accuracy. However, the code snippet reported in the

post was incomplete, and the dependency details were missing. Hence, we resolved the

78

dependencies (keras, numpy and random) and added the required import statements

to the code snippet. With the resolved dependencies, we were able to reproduce the

bug successfully.

Logging (A5) plays a crucial role in the reproduction of different types of bugs.

This action involves adding log statements to the provided code snippet to verify

the reproduction of a bug. Let us consider the issue reported in the Stack Overflow

question (Issue #70546468). The reporter provides a numpy array with shape (1,

3). The reporter then vertically concatenates (stack depthwise) multiple copies of

this array to create tensor groups with shapes (2, 3) and (1, 3). After this vertical

concatenation process, the reporter expects the tensor’s shape to be (2, None, 3).

Unfortunately, the tensor’s shape was (2, None, None), according to the reporter. To

verify the claim made by the reporter, we introduce a log statement within the code

snippet. When we run the modified code snippet, we observe the shape of the stacked

tensor to be (2, None, None), thereby confirming the reproduction and validity of the

bug.

Obsolete Parameter Removal (A6) is a crucial edit action that enhances bug

reproducibility when differences in library and framework versions cause compatibil-

ity issues. It involves removing obsolete parameters no longer supported by newer

versions. Frequent updates to deep learning frameworks and APIs can cause breaking

changes, i.e., the code written for older versions of the framework is incompatible with

newer versions. Developers reproducing these bugs often face challenges when the bug

report’s environment is significantly older than their current working environment,

and downgrading to match those outdated versions is not always feasible due to var-

ious constraints. In some cases, the bug report uses significantly outdated versions

that are no longer supported or maintained by the framework developers. Addi-

tionally, the developer’s current project may have dependencies that require newer

versions of Python or the frameworks, making it impractical to downgrade. Further-

more, organizations or development teams may have policies in place that mandate

using the latest stable versions for security, performance, and maintainability reasons,

preventing the use of older versions.

In such cases, developers must port the bug-reproducing code to their current

environment, where Obsolete Parameter Removal edit action proves highly beneficial.

79

It makes the code compatible with newer framework versions while preserving the bug-

reproducing behaviour. Consider the issue reported in the Stack Overflow post (Issue

#65992364). In this post, the reporter attempts to optimize an object detection

model using ‘pytorch-mobile’, but the code snippet fails to optimize the model file

size. The code snippet in the issue also contains the following line of code.

script_model_vulkan = optimize_for_mobile(script_model , backend=‘‘Vulkan")

However, according to the API documentation of PyTorch 1.6.0 [106], the backend

parameter was no longer supported. We removed the obsolete parameter and thus

were able to reproduce the bug.

Compiler Error Resolution (A7) is one of the extensively employed edit ac-

tions in reproducing bugs. In this edit action, we resolve compiler errors to get the

code running and reproduce the bug. While downgrading the compiler or library

versions can sometimes resolve errors or enable the bug reproduction with deprecated

functionality, it may not always be feasible. For example, major framework releases

often remove support for older versions, making downgrading impossible. Addition-

ally, Python version mismatches between the original buggy code and the current

development environment can prevent successful downgrading. In cases where down-

grading is infeasible due to such constraints, correction of compiler errors enables

reproducing deep learning bugs despite incompatible environments.

For example, in the Stack Overflow post (Issue #71514447), the reporter states

that the training loss is significantly increasing after every epoch. They suspect that

the bug might be due to the incorrect computation of loss values. Furthermore, to

help the developers reproduce the bug, they provide a detailed description of the

bug and a complementary code snippet. However, the code snippet provided by the

user does not compile, as the criterion function has not been defined. Hence, we

replaced the function parameter with the default value of cross-entropy loss, as shown

below.

def train_model(model , optimizer , train_loader , num_epochs , criterion = nn.

CrossEntropyLoss ()):

Using the edit action above, we resolved the compiler errors and thus were able to

reproduce the corresponding bug.

Dataset Procurement (A8) is a critical edit action to reproduce bugs that

80

require specific datasets. In this edit action, we analyze the issue report and attempt

to procure the dataset mentioned in the report. For instance, in the Stack Overflow

post (Issue #73966797), the reporter mentioned that they used the CIFAR-10, a

well-known dataset for object detection. To reproduce the bug, we downloaded the

dataset from its original source7, and using the dataset and the training code, we

could reproduce the bug.

Downloading Models & Tokenizers (A9) is one of the edit actions that was

frequently used to reproduce bugs in Large Language Models and Transformer-based

architectures. In this edit action, we download the pre-trained models and tokenizers

for reproducing a bug. Let us consider the issue reported in the Stack Overflow post

(Issue #69660201). In this post, the reporter faces a ValueError when fitting a text

classification model with a BERT tokenizer, due to a mismatch between the model’s

expected input and the tf.data.Dataset created from the text corpus and labels. For

example, in the Stack Overflow post (Issue #69660201), the reporter has provided

the following information.

R: In the preprocessing layer, I’m using a BERT preprocessor from TF-Hub.

Based on the above information, we added the relevant URLs and configured the

code to download the preprocessor and encoder. After downloading the preprocessor

and encoder, we successfully reproduced the corresponding bug.

tfhub_handle_preprocess = ‘‘https :// tfhub.dev/tensorflow/bert_en_uncased_preprocess /3

"

tfhub_handle_encoder = ‘‘https :// tfhub.dev/tensorflow/small_bert/bert_en_uncased_L -4

_H -512_A -8/1"

Version Migration (A10) is a vital edit action for reproducing bugs in deep

learning frameworks and libraries. It involves adapting code written for older versions

to the latest version, confirming the same bug’s presence in the current environment.

Mondal et al. [89] introduced a similar concept called ‘Code Migration’. Similar

to Obsolete Parameter Removal, Version Migration aims to address compatibility

issues caused by the updates in deep learning frameworks and APIs. While Obsolete

Parameter Removal focuses on removing deprecated parameters, Version Migration

contains additional modifications required to make the code follow the newer version’s

syntax, APIs, and functionalities. This may involve updating function calls, class

7https://www.cs.toronto.edu/ kriz/cifar.html

81

constructors, import statements, and other code elements affected by the version

changes.

The necessity for Version Migration often arises when the versions used in the

bug report are significantly outdated compared to the developer’s current working

environment. Bug reports may contain code snippets written for older framework

versions that are no longer actively maintained or supported by the developers. In

such cases, downgrading to the exact reported version is not feasible, as it would

require reverting to unsupported and potentially insecure versions. Additionally, the

developer’s current project may have dependencies that require newer versions of

Python or deep learning frameworks, making it impractical to downgrade. Further-

more, organizations or development teams may have policies in place that mandate

using the latest stable versions for security, performance, and maintainability rea-

sons, preventing the use of older versions. To demonstrate the utility of the Version

Migration, let us consider the issue reported in the post on Stack Overflow (Issue

#45711636). The post describes an issue with the CNN architecture constructed by

the user. When the user passes the input through the CNN, they encounter a Val-

ueError, which highlights a problem with the negative dimension value of the input.

However, the code snippet provided in the issue uses Tensorflow 1.3.0. To reproduce

this issue in TensorFlow 2.14.0, we carefully migrated the model built in TensorFlow

1.3.0 to the syntax of Tensorflow version 2.14.0. Specifically, we updated the Sequen-

tial, Conv2D and MaxPooling2D constructors to match the TensorFlow 2.14.0 API

syntax. We also changed padding and pool size parameter schemes and removed the

obsolete input shapes. Finally, we upgraded the model compilation and imported the

required Tensorflow 2.14.0 modules. After modifying the code snippet, we success-

fully reproduced the bug in our runtime environment. We verified the reproduction

by comparing the error message from our updated code snippet with the one reported

in the Stack Overflow post.

82

Summary of RQ1: By manually reproducing 148 deep learning bugs, we

identify ten key edit actions that could be useful to reproduce deep learning

bugs (e.g., input data generation, neural network construction, hyperparame-

ter initialization). These edit actions can help developers complete the code

snippets and thus reproduce their deep learning bugs.

4.4.2 RQ2: What component information and edit actions are useful for

reproducing specific types of deep learning bugs?

Identifying useful Information in Bug Reports

While reproducing deep learning bugs, we kept track of information from bug reports

that helped us reproduce them. After reproducing 148 bugs successfully, we have

identified five useful pieces of information that can improve the chance of reproducing

a bug. We discuss these factors in detail below.

Data (F1): Data is one of the essential factors in ensuring the reproducibility

of deep learning bugs. Deep learning systems heavily rely on the data [22], and

reproducing deep learning bugs becomes easier with access to the original data. Data

helps us reproduce the deep learning bugs by providing the exact sample inputs that

trigger the erroneous behaviour. By understanding the training data distributions

and ranges, we can reconstruct the original training environment, which is crucial for

reproducibility. However, the issue reports often lack direct information about the

data. To address this problem, we collect information about the data by extracting

the shape of the data, data distribution, type of variables and their corresponding

ranges from the issue description. Leveraging this information and our proposed edit

actions, namely Input Data Generation (A1) and Dataset Procurement (A8), we can

generate or obtain the necessary data to reproduce deep learning bugs. According

to our investigation, ≈77% of our reproduced bugs contained information about the

data (see Table. 4.6) in their issue reports. For example, in the Stack Overflow post

(Issue #43464835), the reporter has provided the dimensions and sample row of the

training dataset, as shown below.

R: I have a train dataset of the following shape: (300, 5, 720)

Sample Input: [[[6. 11. 389. ..., 0. 0. 0.]]]]

83

Using this information and our proposed edit action Input Data Generation (A1),

we first generated a data frame of size (300, 5, 720) that contains values in the range

from 0 to 400. Then, by leveraging the generated data and other useful information,

we successfully reproduced the corresponding bug.

Model (F2): The model architecture describes the components of a deep learn-

ing model and how they transform inputs into outputs. Understanding the model

architecture is crucial for reproducing deep learning bugs, as it provides insights into

the model’s components, connectivity, and the required neural network architecture.

According to our investigation, ≈58% of our reproduced bugs contained informa-

tion about the model architecture (see Table. 4.6) in their issue reports. However,

the complete source code implementing the model architecture might not always be

available in the issue reports. To overcome this limitation, we carefully gather infor-

mation about a model’s architecture, i.e., the number of layers, layer properties and

activation function from the issue description. Leveraging this information and our

proposed edit action Neural Network Construction (A2), we reconstruct the model

and reproduce the deep learning bugs. For example, let us consider the following

text from a Stack Overflow post (Issue #63204176) that mentions the use of multi-

nomial logistic regression on the MNIST dataset, as shown below. Unfortunately, the

reporter fails to provide the code snippet for the model.

R: I am trying to write a simple multinomial logistic regression using mnist data.

Despite the absence of the code snippet, the issue description provides useful hints

about the model architecture and dataset. Using them and our edit action – Neural

Network Construction (A2), we successfully reproduced the bug.

Hyperparameters (F3): Hyperparameters play a crucial role in controlling the

learning process and model behaviour during training. They encompass parame-

ters such as learning rate, batch size, number of epochs, optimizer, regularization

techniques, and loss functions. The specific values chosen for these hyperparameters

significantly impact a model’s performance, training process, and bug manifestation.

Thus, reporting the complete set of hyperparameters is essential to help reproduce

deep learning bugs. According to our investigation, 48% of our reproduced bugs

contain information about the hyperparameters used in their issue reports. For the

52% of bug reports that did not include hyperparameter information, we used the

84

Hyperparameter Initialization edit action (A2) to reproduce the bugs by initializing

the hyperparameters with default values. In the example Stack Overflow post (Issue

#65993928), we can see how hyperparameters can play a crucial role in reproducing

the bug.

loss2 = (2 * (log_sigma_infer - log_sigma_prior)).exp() \ +((mu_infer - mu_prior)/

log_sigma_prior.exp()) ** 2 \ - 2 * (log_sigma_infer - log_sigma_prior) - 1

loss2 = 0.5 * loss2.sum(dim = 1).mean()

Since the reporter was using a custom loss function, it was vital for them to share

the value of constants and the formula used to calculate the loss. The reporter’s

custom loss function, with constants 2 and 0.5 and its formula, was crucial for re-

producing a bug in model training due to incorrect loss calculation, emphasizing the

need to provide a complete set of hyperparameters.

Code Snippet (F4): Code snippets are critical for reproducing bugs, as high-

lighted by the fact that 98% of professional developers consider them an essential

component of bug reproducibility [118]. They include the data preprocessing, data

splitting technique, code used for training the model, and implementation of the eval-

uation metrics. However, from our manual bug reproduction, we observe that even

though code snippets are present in ≈82% of the bug reports, only 9.41% of them

can be used verbatim for bug reproduction. To address this limitation, we use several

of our proposed edit actions, such as Import Addition and Dependency Resolution

(A4), Logging (A5), Obsolete Parameter Removal (A6), Compiler Error Resolution

(A7) and Version Migration (A10). These edit actions help us fix the errors in the

code and make the code compileable and runnable.

To demonstrate the importance of submitting a complete code snippet, let us

consider the Stack Overflow post with Issue #76186890. In this issue, a high-quality

code snippet helps us reproduce the bug related to a complicated architecture (T5)

without significant changes. The code snippet uses the T5 model from HuggingFace

Transformers for text-to-text translation. It preprocesses the input text data, config-

ures the target IDs to predict a specific answer, calculates loss and perplexity metrics,

85

Table 4.6: Prevalence of useful information in reproducible issue reports

Factor Data Model Hyperparameters Code Snippet Logs

Prevalence 77.4% 58.1% 47.9% 82.1% 87.6%

and trains the model. Having a complete and runnable snippet was helpful in repro-

ducing the bug. It provides sufficient details like data preparation, loss calculation,

model training, and evaluation to improve the ease of reproducing deep learning bugs,

which were essential for bug reproduction.

Logs (F5): Logs provide a real-time record of the model’s behaviour during train-

ing and inference. Traditional software logs consist of information such as event logs

and stack traces, whereas deep learning systems consist of compiler error logs, train-

ing error logs, and evaluation logs [27]. Sharing these logs is crucial for reproducing

deep learning bugs as they allow us to verify if we can reproduce the same erroneous

behaviour reported in the original issue. From our manual bug reproduction, we

discover that ≈88% of our reproduced bugs contain the necessary logs in their issue

reports. Such a high presence of logs in our dataset of reproduced bugs highlights the

importance of logging in deep learning bug reproduction. By matching the logs from

the original issue and the logs from reproduction on our local machines, we were able

to confirm the presence of several bugs in the deep learning systems.

The Stack Overflow post (Issue #34311586) shows how logs can be used to confirm

the presence of deep learning bugs. In this particular issue, the reporter shared the

training logs and the code snippet. We modified the code snippet with our proposed

edit actions to make it compilable and runnable. When executed, we observed the

same anomalous behaviour in the training logs as described by the original reporter.

This demonstrates the importance of sharing training and evaluation logs in the issue

report. We also found them to be one of the most useful pieces of information to

reproduce deep learning bugs.

Relationship between Useful Information and Type of Bugs

During our manual analysis (Section 4.4.2), we identify useful information for repro-

ducing deep learning bugs. We used the Apriori algorithm to determine the relation-

ship between the type of bug and the information required to reproduce the bug. The

86

Table 4.7: Top 3 useful component information for reproducing specific types of deep
learning bugs

Training Model

Code Snippet (0.86) Logs (0.7857)
Data (0.82) Code Snippet (0.7143)
Logs (0.76) Model (0.6429)
Tensor API

Data (0.9655) Logs (0.85)
Logs (0.9310) Code Snippet (0.75)
Code Snippet (0.7241) Model (0.70)

insights from this analysis could serve two purposes – detecting missing information

in submitted bug reports and formulating follow-up questions to obtain any missing

information needed for reproducibility. Table. 4.7 summarizes our findings, and we

discuss them in detail below.

Data: The accurate reproduction of bugs in deep learning systems heavily relies

on the presence of data and its characteristics. They play a crucial role in reproducing

two key categories of bugs - training bugs and tensor bugs.

For training bugs, the data has a confidence value of 82.00% according to our

generated rules (check Table. 4.7). This high confidence highlights the significance

of data in reproducing the numerous training issues that can manifest during model

development. The details about the data, such as the number of samples, class

distribution, feature distributions, data splitting ratios, and preprocessing steps, are

instrumental in reproducing training bugs. For example, training a classification

model on a highly skewed dataset is prone to overfitting. With the knowledge of

the data distribution, we can recreate a representative dataset, which can help us

reproduce the bugs, even if the actual dataset is not available.

For tensor bugs, data characteristics have an even higher confidence of 96.55%,

according to our generated rules (Table. 4.7). This suggests that tensor attributes like

shape, data type, sparsity, value ranges and origin are pivotal for reliably reproducing

many bugs stemming from invalid dimensions or precision issues. For instance, bugs

arising from tensor shape mismatches can emerge if the shape of the input data does

not match the expected input shape. Furthermore, real-world data is often more

vulnerable to human error and biases compared to synthetic data [125]. Therefore,

87

comprehensive documentation and availability of these salient data characteristics are

imperative for the reliable reproduction of the numerous training and tensor bugs

in deep learning systems.

Model: A neural network model’s architecture and implementation details are

crucial to reproducing model and API bugs. The model architecture has 78.57%

and 70.00% confidence values for model and API bugs, respectively, according to

our generated rules. These high values signify that access to model details is vital

for reliably reproducing issues stemming from model capacity, connectivity, and API

usage.

An access to the model architecture (e.g., layer types, layer connectivity, weight

initialization schemes, etc.) can help us systematically reproduce model bugs. Insuffi-

cient learning capacity in specific layers and improper weight initialization might lead

to exploding/vanishing gradients [50], whereas incorrect layer connectivity might lead

to representational bottlenecks [130]. These issues usually manifest as model bugs

during training and inference. Thus, information about the model architecture can

help us localize and reproduce such bugs.

For reproducing the API bugs, model architecture can provide fundamental con-

text. Details like layer dimensions, bottlenecks, parallelization needs, and memory

requirements show how the model interacts with the API [145]. Bottlenecks within

a model, areas where data processing slows down, and the need for parallel process-

ing to handle large-scale computations shape how APIs are utilized. Additionally,

the varying memory requirements of different architectures impact how the model

leverages the system’s resources via the API. This includes memory allocation for

storing weights and activations and managing the flow of data through the network

during operations like forward and backward propagation. Understanding the model

architecture is vital for reproducing bugs, as it indicates whether issues stem from

the model’s design or from its interaction with the API. For example, a bug might

arise due to the model’s inability to handle certain operations efficiently, or it could

be a result of the API not properly supporting specific architectural features. Hence,

model architecture helps us reproduce the bugs triggered by incorrect usage of API.

Therefore, the presence of model architecture allows the reproduction of both model

bugs and API bugs in deep learning systems.

88

Code Snippet: Code snippets are invaluable for reproducing deep learning bugs

since they isolate and encapsulate the core logic that triggers them. Developers

can demonstrate and share the essence of buggy behaviour by creating a minimal

reproducible example. Code snippets have very high confidence values of 86.0% for

training bugs, 72.41% for tensor bugs, 71.43% for model bugs, and 75.0% for API

bugs, according to our generated rules. These high values across all bug types signify

that code snippets are critical for reliably reproducing deep learning bugs.

Each code snippet may contain the relevant model, data processing, training and

evaluation scripts. Developers can use such a snippet to recreate the bug-inducing

steps. For example, a snippet may compactly capture just a few lines, mishandling

tensor shapes or performing incorrect gradient calculations, eliminating any confound-

ing factors and enabling developers to reproduce these bugs. Developers can system-

atically execute, analyze, and debug the code to reproduce various bugs, including

training, tensor, model, and API bugs.

Logs: Logs play a fundamental role in deep learning by facilitating the reproduc-

tion and resolution of bugs. They comprehensively record every detail during model

training, capturing information about various conditions, configurations, and events

before the failures. Logs have high confidence values of 76.00% for training bugs,

93.10% for tensor bugs, 78.57% for model bugs, and 85.00% for API bugs according

to our generated rules. Such high confidence levels across all bug types highlight

that comprehensive log recording is important for the reliable reproduction of deep-

learning bugs.

These logs include essential components such as hyperparameters, dataset charac-

teristics, hardware specifications, framework versions, and random number generator

seed values. The true power of logs lies in their ability to recreate past training

runs precisely. Developers can isolate and reproduce the environment that led to

the original bugs using the logged hyperparameters, such as batch size, learning rate

schedules, and gradient clipping thresholds. Logs can also help developers reproduce

specific deep-learning bugs. For example, logged random seeds can help the develop-

ers recreate a specific weight initialization or data batching order, which can then be

used to reproduce training bugs. Similarly, logs can be used to reproduce Model,

Tensor and API Bugs. Thus, logs are invaluable for accurately recreating conditions

89

Table 4.8: Top 5 edit actions for reproducing specific types of deep learning bugs

Training Model

Input Data Generation (0.5625) Hyperparameter Initialization (0.5142)
Import Addition (0.4583) Dataset Procurement (0.4390)
Compiler Error Resolution (0.3750) Compiler Error Resolution (0.4146)
Dataset Procurement (0.3542) Import Addition (0.4146)
Hyperparameter Initialization (0.3333) Neural Network Construction (0.3659)

Tensor API

Hyperparameter Initialization (0.5517) Input Data Generation (0.40)
Input Data Generation (0.5172) Hyperparameter Initialization (0.40)
Import Addition (0.5172) Import Addition (0.35)
Dataset Procurement (0.4138) Logging (0.25)
Obsolete Parameter Removal (0.3448) Obsolete Parameter Removal (0.25)

that result in errors and enabling the reproduction of deep learning bugs.

Relationship between Edit Actions and Type of Bugs

After determining association between the useful information and the type of bug,

we derived the relationship between the edit actions and the type of bug. We use the

Apriori algorithm to determine the relationship, as done earlier. Table. 4.8 summa-

rizes our findings, and we discuss them in detail below.

Training Bug: Input data generation (56.25% confidence) is the most frequently

used edit action for reproducing training bugs. However, our analysis (Table. 4.6)

shows that ≈77% of the bug reports/SO posts contain information about the data.

Leveraging this information and our proposed edit action – Input Data Generation

(A1), we can reproduce the training bugs in deep learning systems. Furthermore,

import addition (45.8% confidence) and compiler error resolution (37.5% confidence)

are other edit actions which are often used to reproduce training bugs. Although 79%

of bug reports contain code snippets, they are often incomplete. To reproduce the bug

effectively, we thus need to complete these snippets by adding the necessary import

statements and migrating them to the latest versions of libraries and frameworks.

Finally, dataset procurement (35.42% confidence) and hyperparameter initialization

(33.33% confidence) may also help reproduce training bugs by procuring the dataset

required and initializing the missing hyperparameters.

90

Since the training bugs have specific sub-faults, we manually analyse the Stack

Overflow posts and Github issue reports for different sub-types and discuss the edit

actions, which can be used to reproduce the specific sub-faults below.

• Optimisation: Optimization bugs can be reproduced by employing a combi-

nation of edit actions, with a primary focus on three key areas: Hyperparameter

Initialization (60.00% confidence), Input Data Generation (60.00% confidence),

and Neural Network Construction (40.00% confidence). These actions involve

configuring the optimizer and learning rate, creating representative training

data, and building the model architecture, respectively. Additionally, logging

(40.00% confidence) can help monitor the training process, while Import Addi-

tion (20.00% confidence), Compiler Error Resolution (20.00% confidence), and

Version Migration (20.00% confidence) ensure compatibility within the environ-

ment. By systematically testing different optimizer configurations, generating

appropriate input data, and constructing the relevant model architecture, de-

velopers can effectively reproduce optimization issues and gain insight into the

underlying causes.

• Loss Function: Loss function bugs, which can arise from incorrect loss cal-

culations or suboptimal loss function choices, can be reproduced through a

combination of edit actions. Hyperparameter Initialization (66.67% confidence)

plays a crucial role in configuring the loss function while Logging (58.33% con-

fidence) captures the output of intermediate loss values during training. Since

the design of the output layer in the neural network directly influences the

calculation of loss, Neural Network Construction (41.67% confidence) may be

necessary to reproduce the bugs related to the loss function. Furthermore, it is

essential to generate appropriate training data through Input Data Generation

(33.33% confidence) to effectively reproduce bugs related to the loss function.

• Hyperparameters: Hyperparameter sub-faults, such as suboptimal batch

size, suboptimal number of epochs, and suboptimal learning rate, can be re-

produced by utilizing the Hyperparameter Initialization edit action (64.29%

confidence). This involves initializing various hyperparameters, such as batch

91

size, epochs, and learning rate, that may be missing or suboptimal in the pro-

vided code. By experimenting with different commonly used values for these

hyperparameters, we were able to reproduce them. In addition to that, In-

put Data Generation (50.00% confidence) proves to be valuable for reproducing

hyperparameter bugs. Generating representative input data is crucial for trig-

gering hyperparameters-related issues during the training process. Furthermore,

actions like Import Addition (42.86% confidence), Logging (35.71% confidence),

and Compiler Error Resolution (35.71% confidence) are helpful in ensuring that

the code runs smoothly and allows for testing different hyperparameter con-

figurations. These actions contribute to creating a compatible environment to

address hyperparameter-related concerns effectively.

Model Bug: Model bugs are often reproduced by using the edit action – hyperpa-

rameter initialization (51.4% confidence). From our manual analysis, we observed that

the hyperparameters were not often reported for model bugs. Hence, hyperparame-

ter initialization was often used to reproduce the model bugs. Additionally, dataset

procurement (43.90% confidence) and compiler error resolution (41.46% confidence)

are typical edit actions to reproduce the model bugs. Moreover, the code snippets for

deep learning bugs are often incomplete, as observed in our manual analysis; hence,

import addition (41.46% confidence) is a critical edit action for completing the code

snippet and reproducing model bugs. Finally, model bugs might be reproduced by

modifying a neural network’s architecture, as shown by the moderate confidence value

(36.6%) for the edit action – neural network construction. Since model bugs are pri-

marily caused by errors in the neural network architecture [54], reconstructing the

neural network might be the first step to reproduce them. Thus, model bugs can

be reliably reproduced through several edits that initialize hyperparameters, resolve

compiler errors, procure datasets, add imports, and construct neural networks.

Similar to training bugs, model bugs also have specific sub-faults. Hence, we

report the edit actions for reproducing specific sub-faults below.

• Layer Type & Properties: To reproduce specific model bugs related to

individual layers, such as incorrect layer types, suboptimal filter sizes, or inap-

propriate activation functions, it is necessary to carefully define the layers as

92

part of the Neural Network Construction (78.57% confidence) action. By ac-

curately specifying the layers in the model architecture, developers can trigger

the desired layer-specific bugs for further analysis and resolution. It is also cru-

cial to initialize the appropriate hyperparameters through the Hyperparameter

Initialization (57.14% confidence) action. Additionally, obtaining the required

input data shapes via Input Data Generation (42.86% confidence) is essen-

tial for triggering layer-specific issues during the training process. To ensure

compatibility within the project environment, actions such as Compiler Error

Resolution (42.86% confidence) and Version Migration (42.86% confidence) are

beneficial for updating the layer definitions and reproducing any compatibility

issues that may arise.

• Model Type & Properties: Bugs associated with suboptimal model archi-

tecture, incorrect network structure, or missing layers can often be reproduced

using the Neural Network Construction edit action (71.43% confidence). By

carefully constructing the neural network based on the architecture details pro-

vided in a bug report, developers can reproduce sub-faults from the model bugs

category. The interaction between the hyperparameters and the model archi-

tecture could be important for model bugs. Therefore, the Hyperparameter

Initialization action (42.86% confidence) also plays a significant role in effec-

tively reproducing model-related issues. To ensure compatibility with the latest

library and framework version, actions such as Import Addition (35.71% confi-

dence), Obsolete Parameter Removal (28.57% confidence), and Compiler Error

Resolution (28.57% confidence) are essential. These actions help update the

codebase and ensure that the necessary dependencies are met to define the

desired model architecture accurately.

Tensor Bug: Data is the most important information for reproducing tensor

bugs, as shown by the strong correlation between Tensor Bug & Data (see Table. 4.7).

This phenomenon can be attributed to the fact that tensor bugs primarily relate to the

data [54]. Since tensor bugs are so data-dependent, dataset procurement emerges as

an important edit action to reproduce them. Bug reports reference the exact dataset

used (if well-known) or describe the data type, shape and distribution. With this

information, input data generation and dataset procurement can generate or procure

93

the data required for the reproduction of the tensor bugs. Like other deep learning

bugs, import addition (51.72% confidence) and hyperparameter initialization (55.17%

confidence) also play a key role in completing the code snippet and reproducing the

tensor bugs. Thus, tensor bugs can be reliably reproduced through several edits

that procure the datasets, generate input data, add logging, import the required

dependencies, and initialize the hyperparameters.

API Bug: Since API Bugs stem from an improper usage of application program-

ming interfaces (APIs), they do not focus as heavily on the model training process.

As a result, bug reports might lack detailed information about the input data or

hyperparameters used. This encourages the use of common edit actions such as in-

put data generation (40.00% confidence) and hyperparameter initialization (40.00%

confidence) when reproducing API bugs. Additionally, code snippets in bug reports

are often incomplete, necessitating edit actions like import addition (35.00% confi-

dence) and logging (25.00% confidence) to trace the intermediate states and outputs

of the API. Thus, API bugs can be reliably reproduced through several edit actions

that generate input data, import the required dependencies, add logging, initialize

hyperparameters and remove obsolete parameters.

Summary of RQ2: By applying the Apriori algorithm on the data produced

from our successful reproduction of 148 deep learning bugs, we identified the

top 3 most important pieces of information and the top 5 edit actions needed

to reproduce each category of deep learning bug. This provides insights into

the missing information that should be solicited in bug reports as well as the

edit actions required to reproduce specific bug types.

4.4.3 RQ3: How do the suggested edit actions and component

information affect the reproducibility of deep learning bugs?

We conduct a developer study to determine if our suggested edit actions and infor-

mation help one reproduce deep learning bugs. We prepared four sets of bugs, each

consisting of two different types of bugs (see Section 4.6). We randomly assigned one

of the four bug sets to each participant and instructed them to reproduce the bugs

in their assigned set. We divided the participants into the control and experimental

94

Table 4.9: Percentage of bugs successfully reproduced by control and experimental
group across different sets.

% of bugs successfully
reproduced by Control
group

% of bugs successfully re-
produced by Experimen-
tal group

% Increase

Set 1 75.00 100.00 25.00
Set 2 66.66 83.33 16.66
Set 3 83.33 100.00 16.66
Set 4 66.66 100.00 33.33
Average 72.91 95.83 22.92

groups using stratified random sampling (see Section 4.6). The developers in both

the control and experimental groups reproduced the same bugs from our prepared set

of bugs. The only difference was that the experimental group received hints based on

our findings to help reproduce the bugs, while the control group did not receive these

hints. Since both groups received randomly selected sets from the same pool of four

identical bug sets, each bug was reproduced independently by at least five developers

across both control and experimental groups.

Table. 4.9 shows the bug reproducibility rate of the control and experimental

groups across different sets of bugs. We found that developers in the control group

could reproduce 72.91% bugs without hints. In contrast, the developers in the exper-

imental group could reproduce 95.83% of bugs with our hints - a 22.92% increase.

This significant increase in reproducibility rate demonstrates that our identified edit

actions and information improved developers’ ability to reproduce deep learning bugs.

We also collect open-ended feedback from the participants using the free-form

text boxes and performed thematic analysis to better understand their pain points in

bug reproduction. Their feedback provided new insights not covered in our original

study. Notably, 31.78% of developers highlighted the lack of standardized debugging

tools as the primary challenge in bug reproduction. Furthermore, the developers

mentioned missing information (data, logs, hyperparameters, and dependencies), and

lack of unit testing or version control in DL systems as the most challenging aspects

of reproducing deep learning bugs, as shown below.

95

Question: What are the challenges of bug reproduction in day-to-day activities?

R1: lack of debugging support and missing information

R2: data quality issues and lack of standardized debugging procedures and tools.

R3: no standardized debugging practices, and lack of clarity on the information

needed, also lot of dependencies (libraries, framework, data, infra and so on)

R4: the flaky nature of deep learning models, and the unclear expectations of how

model is supposed to behave.

R5: memory issues, documentation issues (missing information in issues), weak de-

bugging support

R6: version control of deep learning is tricky, because of multiple snapshots of mod-

els, model management and reproducibility is tricky. also, the lack of standardized

debugging practices makes it more tricky.

R7 : distributed computing makes it difficult to find and reproduce the bugs. test

coverage is also a problem as we cannot find the bugs properly because of lack of

coverage and that is a problem with the reproduction of bugs.

We also analyze how our suggested actions and information help the participants

in bug reproduction. According to the qualitative responses, 40.91% of developers

found our suggested edit actions to be helpful for reproducing their assigned bugs.

54.55% of developers report that our suggested hints about the useful information

helped them narrow down where to look in the code. Thus, the qualitative feedback

below highlights the benefits of our findings in real-life settings.

R1 : I followed the guidance in the survey and used the hints to generate the appro-

priate training dataset, which then allowed me to reliably reproduce the problematic

behavior during model training.

R2 : had to add manual imports for torch and nn, and fixed the compiler errors

related to imports, as highlighted by the hint provided

R3 : Following the hint, I systematically generated all of the necessary input data

that would be required in order to reliably reproduce the software bug during testing.

R4 : The hint mentions the Iris dataset, so I used the edit action called “Dataset

96

Procurement” and got the dataset, downloaded it and edited the code snippet to

reproduce the bug.

R5 : with the given hint, I generated the input data required for the bug reproduction.

R6 : The imports were missing and as per the hint, data frame was generated for

specific columns, which helped the resolution of the bug.

R7 : As hinted in the survey, explicitly specifying the columns when constructing the

data frame helped in the bug reproduction

We also calculate the time the control and experimental groups took to reproduce

their assigned bugs. This helps us assess our findings’ benefits in reducing the time

required for deep learning bug reproduction. Table. 4.10 show the time taken to

reproduce bugs by the control and experimental groups. The experimental group

outpaced the control group in bug reproduction across all sets, with the most notable

difference in Set 4, where the experimental group was 30.16% faster. On average, the

control group lagged behind the experimental group by 24.35% across all sets. These

results demonstrate that our recommended edit actions and component information

enabled the experimental group to reproduce deep learning bugs much faster than

the control group that did not receive this information.

Impact of Hints on Bug Reproducibility

To determine the impact of our hints on bug reproducibility, we constructed a gener-

alized linear model (GLM) using the Binomial family with a logit link function [96].

This allowed us to test the statistical significance of multiple independent factors

on bug reproducibility (i.e, our dependent variable). The factors were experience

with deep learning bug fixing, experience with deep learning, profession, and the

presence/absence of hints, with ‘Hints’ being our main factor of interest. The DL-

BugFixExp * factors represent the participants’ experience in fixing deep learning

bugs, with levels 0, 1, and 2 corresponding to experience of 0-4, 5-9, and 10+ years of

experience, respectively. We chose Odds Ratio as our effect size metric for two main

reasons. First, it has been commonly used in similar studies within software engi-

neering research, as demonstrated by Ceccato et al. [26]. Second, the Odds Ratio is

appropriate for a logistic regression-based model with a binary target variable, which

97

Table 4.10: Time taken for bug reproduction by control and experimental groups

Average time taken by
Control Group (seconds)

Average time taken by
Experimental Group (sec-
onds)

% De-
crease

Set 1 1437 1088 24.28
Set 2 1803 1563 13.31
Set 3 2548 1792 29.67
Set 4 2165 1512 30.16

Table 4.11: GLM model for assessing the impact of various factors on the repro-
ducibility of deep learning bugs

Variable Estimate Std. Error z value Pr > |z| Effect Size (OR)
Intercept -3.4229 1.898 -1.803 0.071 -
DLBugFixExp 0 0.2251 0.856 0.263 0.793 1.252493
DLBugFixExp 1 -0.2449 0.564 -0.435 0.664 0.782786
DLBugFixExp 2 -3.4032 2.283 -1.491 0.136 0.033268
Hints 3.0899 0.991 3.118 0.002 21.974308
DLExp 2.5448 1.725 1.475 0.140 12.740844
Field 0.1915 1.145 0.167 0.867 1.211112

we used in our study.

Based on the regression results in Table 4.11, we can see that the presence of hints

had a statistically significant positive effect on the reproducibility of deep learning

bugs (p = 0.002 < .05). The effect size, as measured by the odds ratio, indicates that

the presence of hints increases the odds of reproducing a deep learning bug by a factor

of 21.97 compared to the absence of hints. The intercept term, with an estimate of

-3.4229 (p = 0.071), represents the baseline probability of reproducing a deep learning

bug when no hints are provided, the participant has no experience with deep learning

bug fixing, deep learning in general, and their profession is not considered. Moreover,

as shown in Table. 4.11, factors like experience with deep learning bug fixing, general

deep learning experience, and profession (academia vs industry) did not significantly

influence reproducibility.

Overall, the above results suggest that the presence of targeted hints positively

impacts the reproducibility of deep learning bugs with a statistically significant mar-

gin and a large effect size. Other factors, such as experience and profession, do not

play a significant role in bug reproducibility.

98

Summary of RQ3: In the user study, developers were assigned to either

the experimental or control group where the experimental group received our

suggested edit actions and component information. The experimental group

reproduced 22.92% more deep learning bugs and decreased reproduc-

tion time by 24.35% compared to the control group. This demonstrates that

the identified edit actions and component information substantially improve

the reproducibility rate and reduce the time needed to reproduce deep learning

bugs.

4.5 Discussions

In this section, we first provide actionable insights about the reproducibility of deep

learning bugs and recommend potential directions for further research (see Section

6.1). We then demonstrate how our findings can improve the reproducibility of the

DL bugs with the use of large language models (e.g., Llama 3) (see Section 6.2).

4.5.1 Reproducibility of Deep Learning Bugs

From our manual reproduction and user study, we observe that API, Model, and

Tensor bugs are relatively more straightforward to reproduce. This behaviour can

be explained by the fact that these bugs are more specific to the location in the code

where they originate. For example, faulty input data usually triggers tensor bugs,

whereas incorrect usage of a framework’s API causes API bugs. In contrast, training

bugs cover multiple issues related to deep learning model training, and GPU bugs

relate to GPU devices for deep learning and manifest across GPU interactions.

This behaviour is further supported by the reproducibility rates and efforts in-

volved in reproducing different types of bugs. The reproducibility rates of Training

bugs and GPU bugs were 89.65% and 42.85%, respectively. On the other hand, the re-

producibility rates for API, Model and Tensor bugs were 81.81%, 88.46%, and 80.75%,

respectively. Even though the training bugs could be reproduced reliably, the efforts

involved in reproducing the training bugs were significantly more than those of other

bugs. The average time to reproduce the API, Model and Tensor bugs was 45.5, 43.9

and 43.8 minutes, respectively. On the other hand, the average time to reproduce

99

the Training bugs was 52.5 and 57.33 minutes, respectively. These statistics highlight

that we need to put more effort into reproducing the Training and GPU bugs, which

calls for further research into the specific nature of Training and GPU bugs.

To assist future research in the reproducibility of deep learning bugs, we provide

directions for future research below:

Understanding Training Bug Reproducibility : Training bugs are the most com-

mon type of bug in deep learning systems, accounting for 52.5% of all bugs [54].

Training bugs have high reproducibility rates but also require significant effort to

reproduce. This behaviour presents an opportunity to understand better what fac-

tors make training bugs more reproducible or harder to reproduce. By analyzing the

training procedures, model architectures, optimizers, hyperparameters, and other el-

ements that either aid or hinder reproducibility, we can uncover insights to guide the

diagnosis and repair of training bugs. There is also room to develop improved tools

and methodologies explicitly focused on efficiently reproducing the nuanced nature

of training bugs.

Analyzing the GPU Bug Reproducibility Gap: The lower reproducibility rate for

GPU bugs highlights a gap in understanding the interactions between deep learning

code and the underlying GPU hardware or drivers. By further studying irrepro-

ducible GPU bugs and quantifying the aspects that impede reproducibility, such as

hardware differences, software dependencies, and environmental factors, we can work

towards solutions to increase reproducibility. Opportunities exist to build infrastruc-

ture, leverage containerization or virtualization, and create testing tools to better

control for sources of non-determinism that impact GPU bug reproduction.

Reproducible Testbeds for Deep Learning: Ultimately, the variability in reproduc-

ing different categories of deep learning bugs motivates the need for reproducible

testbeds. Shared sets of reproducible deep learning bugs with associated test cases,

model architectures, training configurations, dependencies, and environmental con-

texts will accelerate future research. Constructing such testbeds requires systematic

characterization of how these factors influence reproducibility. Reproducible testbeds

also support developing specialized techniques for efficiently reproducing and debug-

ging deep learning bugs.

100

4.5.2 Challenges in Reproducing Deep Learning Bugs: A Comparison

between Stack Overflow and GitHub

Reproducing deep learning bugs from Stack Overflow posts and GitHub repositories

presents different challenges and requires varying levels of effort. The main differences

lie in the availability of code and data, environmental setup, context, completeness,

and reproducibility expectations. We explain them briefly as follows.

First, GitHub repositories often provide the complete codebase and sometimes

the accompanying datasets, whereas Stack Overflow posts typically include small

code snippets without the broader context and data. Hence, we need more effort in

reconstructing the code and generating synthetic data when reproducing bugs from

Stack Overflow. Second, GitHub repositories commonly include setup instructions,

dependency files, and development environment configurations, making it easier to

recreate the original environment accurately. On the contrary, Stack Overflow posts

rarely provide such details, requiring guesswork about software versions, dependen-

cies, and environment settings. Finally, GitHub issues tend to have more contextual

information, such as detailed problem descriptions, steps to reproduce a bug, and

error logs supporting root cause analysis of the issue. Stack Overflow posts may lack

this level of detail, making it harder to comprehend and reproduce a bug accurately.

Despite the additional resources available in GitHub repositories, reproducing

bugs from them still presents several challenges:

• Incomplete or outdated repositories : Critical files, dependencies, or code changes

may be missing or outdated, making it difficult to reproduce the exact environ-

ment and conditions under which a bug occurred.

• Large and complex codebases : Deep learning projects often have extensive and

intricate codebases, requiring significant time and expertise to set up and nav-

igate them.

• Proprietary or sensitive data: Many projects may involve proprietary data that

cannot be shared publicly, making it challenging to reproduce data-related bugs

without access to the original data.

101

• Insufficient documentation: Many GitHub repositories fail to provide clear doc-

umentation on project architecture, installation steps, and expected behaviours.

The lack of clear documentation makes it difficult for developers to reproduce

bugs, as they face challenges in understanding the codebase and configuring the

project locally.

• Dependency management : Resolving dependency conflicts or managing com-

patibility issues across different project versions can be a significant challenge

when reproducing bugs.

To address these challenges, we recommend several changes or adaptations to the

status quo as follows. First, Stack Overflow should leverage its user base and search

functionality for discussing common deep-learning bugs and quick solutions, while

GitHub should be the primary platform for in-depth bug reproduction and resolution.

Second, Stack Overflow should introduce a specialized format for deep learning bug

reports, expanding on its traditional minimum working example approach to include

dataset details, framework versions, hardware specifications, and reproducible code

snippets. GitHub repositories should be kept up-to-date, well-documented, and com-

plete. Finally, both platforms should incentivize active participation in bug reporting

and resolution through specialized badges, reputation points, or recognition. Stack

Overflow could introduce “Deep Learning Debug Rooms” for real-time, collaborative

problem-solving, and GitHub could highlight top contributors in bug resolution. By

combining Stack Overflow’s community-driven approach with GitHub’s comprehen-

sive project management features, we can develop a more efficient ecosystem for deep

learning bug resolution, leading to more robust deep learning systems.

4.6 Threats to Validity

Threats to external validity relate to the generalizability of our findings. We have

reproduced multiple bugs from five different types to mitigate this threat. Moreover,

we have reproduced bugs from 14 different architectures, ranging from Logistic Re-

gression, CNN, Transformers and BERT-based architectures. Finally, we have also

reproduced the bugs from the past six years (2017-2023), and our findings align with

102

and extend the previous findings of software bug reproducibility [89], possibly indi-

cating the generalizability of our study.

Threats to internal validity pertain to experimental errors and confounding vari-

ables during the reproduction of bugs. The possibility of introducing new bugs into

the code exists during bug reproduction. We have implemented several strategies

and precautions to mitigate these threats in our experimental design. For instance,

bug reproduction attempts are carried out in controlled and isolated Python virtual

environments. We refrain from using hardcoded or fixed values in our code snip-

pets to prevent potential errors during bug reproduction. For instance, during the

bug reproduction, we utilize random hyperparameter initialization, construct multi-

ple neural networks, and generate randomized input data that aligns with the original

distribution. This methodology mitigates the influence of unforeseen variables on the

outcomes of our experiments. To further mitigate this threat, we ran the updated

code snippets five times for all the edit actions. Following bug reproduction, we un-

dertake rigorous manual analysis to identify any discrepancies or anomalies in the

outcomes.

A potential threat to the validity of our findings arises from the inclusion of

context-specific, natural language hints from bug reports. This could potentially

introduce bias when assessing the experimental group’s performance. However, our

analysis of qualitative feedback from participants indicates that participants primarily

benefited from the hints derived from our Apriori algorithm (RQ2), with minimal

mention of context-specific hints from the bug report. In particular, the participants

reported using the guidance to generate appropriate datasets, address import issues,

create necessary input data, and apply specific edit actions, which are closely tied

to our algorithm’s outputs rather than the natural language hints. Thus, the threat

posed by the inclusion of natural language hints might be negligible.

Another threat to validity is the incomplete or incorrect information in the bug

report, which could impact the applicability of certain edit actions suggested by our

technique. In particular, edit actions that require additional context from the report,

such as those involving input data generation, neural network construction, dataset

procurement, and downloading models/tokenizers, may be limited by missing details

in the reports. However, the majority of our suggested edit actions focus on code

103

modifications that can be derived from the provided code snippets without relying

heavily on external context. Therefore, while missing information may constrain

our capability for data and model-driven actions, our core technique and findings

remain widely applicable for many code-focused edit recommendations. To mitigate

this threat further, we apply extensive filtration based on the criteria suggested by

Moravati et al. [93] and Humbatova et al. [54], which leads to a clean and generalizable

dataset.

Finally, the way in which the contextual information is presented to the developers

could potentially threaten the validity of the control and experiment groups in the

user study. To mitigate this threat, we ensure that the contextual information is

presented in an identical format to the control and experiment groups.

Threats to construct validity relate to the use of appropriate metrics for evaluating

the results of a user study. In the user study, we used the reproducibility rate and

time to reproduce the deep learning bugs as the metrics to evaluate the benefits

of our findings. To measure these accurately, we had participants justify why and

how they used the edit actions or found certain information important. We verified

these justifications against our ground truth to determine if the bug was successfully

reproduced. After checking the user justifications, we calculated the reproducibility

rate and spent time. By including user justifications and verifying them, we ensured

that the metrics directly measured how easily bugs could be reproduced. We also had

clear criteria for determining reproduction success and used Opinio for precise timing

data [3], mitigating threats related to measurement errors or subjective assessments.

Another threat to the validity might be the accuracy of tags used to categorize

the bugs. The incorrect categorization of bugs might lead to incorrect conclusions for

different bugs. To mitigate this threat, we only select the tags that are present in the

taxonomy and the sub-taxonomies defined by Humbatova et al. [54]. For example,

we specifically chose the “loss-function” as one of the tags to distinguish the training

bugs since the Loss Function falls within the sub-taxonomy of Training bugs. Thus,

the threats to construct validity were effectively mitigated.

104

4.7 Related Work

There have been several studies that focus on the aspects of reproducibility of software

bugs [89, 91, 92], or focus on why some bugs cannot be reproduced [109, 108]. Many

studies attempt to learn the nature of deep learning bugs [152, 57, 54, 83], and how

they can be localized automatically [58, 143, 153]. A few studies also attempt to

learn about the state of reproducibility of deep learning in software engineering [28,

73], and reproduce deep learning bugs as a part of benchmark dataset creation [93].

Unfortunately, only a little research has been done to understand the challenges in

reproducing deep learning bugs and how we can improve their reproducibility.

Mondal et al. [89] extensively investigated the reproducibility of programming

issues reported on Stack Overflow. They identified several key edit actions required

to reproduce programming errors and traditional software bugs. While their work

is a source of inspiration, it does not provide the edit actions for reproducing deep

learning bugs. Since their dataset is constructed in Java programming language with

no questions related to deep learning, their findings might not apply to deep learning

bugs.

Chen et al. [28] proposed a unified framework to train reproducible deep learning

models. They also provide reproducibility guidelines and mitigation strategies for

conducting a reproducible training process for DL models. However, the primary

focus of their study was on the reproducibility of deep learning models, not deep

learning bugs. Furthermore, the guidelines for deep learning models might not always

extend to deep learning bugs.

Moravati et al. [93] constructed the faultload benchmark containing deep learning

bugs, defects4ML. As a part of their benchmark dataset, they reproduced 100 bugs as

a part of the reproducibility criterion for benchmark datasets. While their study was

the first to reproduce deep learning bugs actively, they did not report the techniques

and actions used to reproduce bugs. Furthermore, they did not report the useful

information from the issue reports, which helped them reproduce the bugs.

Unlike many earlier studies above, we conduct an extensive empirical study to

understand the challenges of deep learning bug reproduction and how we can improve

the reproducibility of deep learning bugs. We construct a dataset of 668 bugs and

manually reproduce 165 bugs, spanning three frameworks, five types of bugs, and 14

105

architectures. We not only (1) define ten edit actions which can be used to reproduce

deep learning bugs but also (2) explore the associations among the type of bugs, the

information required to reproduce them, and the specific edit actions that can be used

to reproduce them, which makes our work novel. Our findings are also generalizable

to Tensorflow and PyTorch bugs due to the diversity of our dataset. To ensure

transparency and reproducibility, we have made our dataset and replication package

publicly available8.

4.8 Summary

The reproducibility of deep learning bugs remains a significant challenge for software

practitioners, particularly given their low success rate of reproducibility (e.g., 3%) and

their potential for severe consequences. Through our empirical study, we reproduced

148 deep learning bugs across three frameworks and 22 architectures, identifying ten

key edit actions and component information essential for bug reproduction. Our inves-

tigation revealed important associations among bug types, component information,

and edit actions influencing reproduction success. The practical value of our findings

was assessed through a user study involving 22 developers, where participants using

our recommended edit actions and information reproduced 22.92% more bugs, spend-

ing 24.35% less time. Our work advances the current state of knowledge by providing

actionable insights into deep learning bug reproduction and also empowers software

practitioners with concrete strategies to tackle the challenges of bug reproduction and

subsequent correction. Chapter 5 concludes our report and discusses the avenues for

future work.

8https://github.com/mehilshah/Bug Reproducibility DL Bugs

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Software practitioners and AI engineers encounter significant challenges when repro-

ducing bugs in deep learning systems. Recent studies reveal that only 3% of deep

learning bugs are reproducible, demonstrating the challenges in their reproduction.

These bugs can originate from various sources, including mislabelled training data,

faulty code, hardware problems, framework incompatibilities, and environment con-

figurations. Moreover, the inherent non-determinism and data-driven nature of deep

learning systems further complicate the reproduction of these bugs. Despite signifi-

cant research efforts and advancements in recent years, we identify two major gaps in

the literature. First, there is a lack of comprehensive understanding of how data bugs,

one of the most prevalent types of deep learning bugs, manifest in deep learning sys-

tems. Such an understanding is crucial for the successful reproduction of data bugs.

Second, no existing studies examine the reproducibility challenges of deep learning

bugs. Addressing these knowledge gaps is essential for developing effective tools or

methods supporting bug reproduction in deep learning applications.

In this RAD report, we conduct two empirical studies to address the above gaps

from the literature. Our first study examines how data quality problems manifest

themselves during the training of deep learning models. We also analyze how their

symptoms and manifestation vary across three types of software engineering data –

code, text, and metric. Our findings reveal that code-based issues lead to gradient in-

stability, text-based problems cause abnormal weight distributions, and metric-based

issues result in vanishing gradients. These findings advance our understanding of the

data bugs in deep learning systems. Our second study focuses on bug reproduction,

where we manually reproduce 148 deep learning bugs, spending ≈280 person-hours

106

107

and identify ten essential edit actions and five pieces of component information. Us-

ing the Apriori algorithm, we also establish associations among bug types, compo-

nent information, and necessary edit actions, enabling automated recommendation.

Then, we assess the recommended items through a developer study involving 22 par-

ticipants, where developers using our recommended actions successfully reproduced

22.92% more bugs, spending 24.35% less time.

In summary, our research systematically analyzes how data bugs manifest dur-

ing model training across different types of software engineering data (code-based,

text-based, and metric-based) and provides detailed insights into models’ gradient

behaviours, weight distributions, and representations. Through our novel framework

leveraging the Apriori algorithm, we provide comprehensive guidelines for reproduc-

ing deep learning bugs with specific edit actions and component information, which

was not offered by any of the existing works.

5.2 Limitations

We discuss the limitations of our conducted studies as follows:

5.2.1 Limitations of Study 1: Understanding Data Bug Symptoms

Our first study on understanding data bug symptoms has the following limitations:

Dataset Coverage. While we analyzed three types of software engineering data

(code-based, text-based, and metric-based), our datasets were primarily from open-

source projects. The findings may vary for proprietary software systems or different

application domains.

Model Selection. We focused on specific state-of-the-art models [42, 51, 52]

for each data type. Though we validated our findings with alternative models, the

manifestation patterns might differ for other model architectures or newer variants.

Hardware Environment. Our experiments were conducted using specific GPU

configurations from Compute Canada clusters [17]. The training behaviours and bug

manifestations might show slight variations under different hardware setups.

108

5.2.2 Limitations of Study 2: Enhancing Bug Reproducibility

Our second study on bug reproducibility has the following limitations:

Dataset Sample Size. Although we analyzed 668 deep learning bugs from Stack

Overflow and GitHub, they represent a subset of all possible bug patterns in deep

learning systems. The distribution of bug types might differ in other contexts or

repositories.

Framework Versions. Our reproduction guidelines were developed based on

specific versions of deep learning frameworks. Some details might need adjustment

for newer framework versions as the ecosystem evolves.

User Study Scale. The user study involved 22 developers, which while informa-

tive, represents a modest sample size. A larger-scale study might reveal additional

insights or variations in findings.

Time Frame. The bug reports we analyzed were collected within a specific time

frame (2017 to 2023). As deep learning technologies evolve, new types of bugs and

reproduction challenges might emerge.

These limitations present natural opportunities for future research and will en-

courage further work.

5.3 Future Work

Building upon our empirical studies on understanding and reproducing deep learning

bugs, we anticipate several promising directions for future work. These directions

target standardization and automation to tackle data quality issues and reproduction

challenges in deep learning bugs.

5.3.1 Analysis and Verification of Bug Manifestations

Our investigation of data quality issues across code-based, text-based, and metric-

based data revealed distinct manifestation patterns for each type. To leverage these

findings, future work should target automated detection and verification of these

patterns. This includes developing pattern recognition algorithms that can monitor

a deep learning model under training and identify the gradient instability in code-

based issues, abnormal weight distributions in text-based problems, and vanishing

109

gradients in metric-based cases. Based on our investigation across multiple datasets,

we suggest that early warning systems could be useful in monitoring these indicators

during training. Additionally, given our manual reproduction of 148 bugs, we believe

that there is a need for appropriate metrics that can quantify observed patterns

in various property distributions (e.g., gradients, weights, and biases), which can

standardize and support the detection of specific bugs across different deep learning

frameworks.

5.3.2 Improving Bug Reporting

Our user study involving 22 participants demonstrates that complementary infor-

mation and guidance significantly improve bug reproduction (Chapter 4). To build

on this success, future research can focus on developing effective templates for bug

reporting and capturing essential debugging information. These templates should

systematically document the specific component information required for bug repro-

duction, including model configurations, data preprocessing steps, and environment

settings. They should also incorporate sections for recording the relevant edit actions

identified in our study, such as parameter adjustments and data transformations.

While our work provides initial key elements to formulate such a template, further

research is needed to validate the template and its components across different frame-

works and development contexts. They should focus on the usability and practicality

of such templates. Moreover, additional investigation is needed to understand how

these templates should be adapted for different types of deep learning bugs, given the

distinct symptoms observed across code-based, text-based, and metric-based issues

(Chapter 3).

5.3.3 Generating Reproducibility Scripts for Bug Reports

Our study found that developers reproduced 22.92% more bugs when provided with

a combination of code snippets and structured guidance (e.g., relevant edit actions).

Our findings highlight that code alone is insufficient; successful bug reproduction

requires the synergy between clear instructions, environment specifications, and exe-

cutable scripts. Given the complexity of the whole reproduction process, reproduction

scripts might be an appropriate option to tackle the challenge. Our analysis indicates

110

that effective reproduction scripts should contain three key elements: (a) executable

code that triggers the bug, (b) environment setup instructions, including dependen-

cies and configurations, and (c) relevant edit actions and component information for

reproduction. To ensure consistent reproduction across different development setups,

the scripts should be designed to run in a containerized environment that can be

automatically provisioned. Such an automation could help standardize the bug re-

production workflow and help the software practitioners and AI engineers reproduce

their bugs effectively.

5.4 Our Future Research Plan

Based on our empirical findings and identified limitations, we plan to develop three

interconnected automated solutions to enhance the reproducibility of deep learning

bugs:

5.4.1 Minimal Working Example Generator

As our first step, we will develop an automated technique to generate or synthe-

size minimal working examples from bug reports. It will address the challenge of

verbose and overcomplicated bug reports by automatically extracting and synthesiz-

ing essential code components. By leveraging natural language processing and code

analysis techniques, our tool will distil bug reports into concise, self-contained ex-

amples demonstrating the core issue. This solution has the potential to significantly

reduce debugging time and improve bug reproduction success rates across the devel-

oper community. The minimal working examples generated by this tool will serve as

the foundation for our more comprehensive reproducibility solutions.

5.4.2 Reproducibility Script Generator

Building upon the minimal working examples, we will create an automated sys-

tem for generating complete reproduction scripts from bug reports. This system will

expand on the concise examples by incorporating all necessary context and setup

information. By combining our minimal working examples with automated environ-

ment detection and configuration generation, the system will produce comprehensive

111

scripts that capture the complete reproduction workflow. The potential impact in-

cludes standardized bug reproduction processes, reduced manual effort, and improved

communication between bug reporters and developers. These scripts will be designed

to work seamlessly with our containerized environment, forming a complete repro-

duction pipeline.

5.4.3 Containerized Reproduction Environment

To complete our reproduction ecosystem, we will develop a standardized container-

ized solution that will execute our generated scripts in a controlled environment. This

final piece will address the challenges of environment-dependent bugs and inconsis-

tent reproduction results by providing a consistent platform for reproducing deep

learning bugs across different hardware configurations and framework versions. The

environment will be specifically designed to support both our minimal working exam-

ples and comprehensive reproduction scripts, ensuring reliable execution regardless of

the user’s local setup. The potential impact includes eliminating environment-related

reproduction failures and enabling seamless sharing of reproduction environments

within the development community. Together, these three solutions will form an end-

to-end system for reliable deep learning bug reproduction, from initial bug report to

verified reproduction.

Bibliography

[1] Federal transportation agency finds tesla’s claims about feature don’t match
their findings and opens second investigation. https://www.theguardian.com/
technology/2024/apr/26/tesla-autopilot-fatal-crash. Accessed on 25
Apr, 2024.

[2] Open computer vision library. https://opencv.org/. Accessed on 29 June,
2024.

[3] Opinio survey software. https://surveys.dal.ca/opinio/admin/folder.do.
Accessed on 30 August, 2024.

[4] Python pillow official site. https://python-pillow.org/. Accessed on 27
June, 2024.

[5] Get confusion matrix from a keras multiclass model. https://stackoverflow.
com/q/50920908, 2018. Accessed on December 28, 2023.

[6] data utils.is generator or sequence returns always false. https:

//stackoverflow.com/q/58190114, 2019. Accessed on January 3, 2024.

[7] Peter Martey Addo, Dominique Guegan, and Bertrand Hassani. Credit risk
analysis using machine and deep learning models. Risks, 6(2):38, 2018.

[8] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, page 487–499, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[9] Saeed S Alahmari, Dmitry B Goldgof, Peter R Mouton, and Lawrence O
Hall. Challenges for the repeatability of deep learning models. IEEE Access,
8:211860–211868, 2020.

[10] Alberto Amato and Vincenzo Di Lecce. Data preprocessing impact on machine
learning algorithm performance. Open Computer Science, 13(1):20220278, 2023.

[11] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,
Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng,
Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition in english
and mandarin. In International conference on machine learning, pages 173–182.
PMLR, 2016.

[12] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proc. ICSE,
pages 361–370, 2006.

112

https://www.theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-crash
https://www.theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-crash
https://opencv.org/
https://surveys.dal.ca/opinio/admin/folder.do
https://python-pillow.org/
https://stackoverflow.com/q/50920908
https://stackoverflow.com/q/50920908
https://stackoverflow.com/q/58190114
https://stackoverflow.com/q/58190114

113

[13] Apache. Apache jira. https://issues.apache.org/jira/projects/HADOOP/
issues. Accessed on April 28, 2024.

[14] A. Arcuri. On the automation of fixing software bugs. In ICSE, pages 1003–
1006, 2008.

[15] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software Testing, Ver-
ification and Reliability, 24(3):219–250, 2014.

[16] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software
engineering challenges of deep learning. In 2018 44th euromicro conference on
software engineering and advanced applications (SEAA), pages 50–59. IEEE,
2018.

[17] Susan Baldwin. Compute canada: advancing computational research. In Jour-
nal of Physics: Conference Series, volume 341, page 012001. IOP Publishing,
2012.

[18] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[19] God Bennett. Answer to ‘what is the role of the bias in neural networks?”.
https://stackoverflow.com/a/47118013, Nov 2017. Accessed on September
3, 2024.

[20] Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett.
A survey of deep learning methods for cyber security. Information, 10(4):122,
2019.

[21] Houssem Ben Braiek and Foutse Khomh. On testing machine learning pro-
grams. Journal of Systems and Software, 164:110542, 2020. URL: https:
//www.sciencedirect.com/science/article/pii/S0164121220300248.

[22] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich.
Data validation for machine learning. In MLSys, 2019.

[23] Jason Brownlee. A gentle introduction to exploding gradi-
ents in neural networks. https://machinelearningmastery.com/

exploding-gradients-in-neural-networks/, Dec 2017. Accessed on
September 6, 2024.

[24] Richard L Burden and J Douglas Faires. Numerical analysis, brooks, 1997.

[25] Sicong Cao, Xiaobing Sun, Ratnadira Widyasari, David Lo, Xiaoxue Wu, Lili
Bo, Jiale Zhang, Bin Li, Wei Liu, Di Wu, et al. A systematic literature review on
explainability for machine/deep learning-based software engineering research.
arXiv preprint arXiv:2401.14617, 2024.

https://issues.apache.org/jira/projects/HADOOP/issues
https://issues.apache.org/jira/projects/HADOOP/issues
https://stackoverflow.com/a/47118013
https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/

114

[26] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. A family of experiments to assess the effective-
ness and efficiency of source code obfuscation techniques. Empirical Software
Engineering, 19:1040–1074, 2014.

[27] Boyuan Chen and Zhen Ming (Jack) Jiang. A survey of software log instru-
mentation. ACM Computing Surveys, 54(4):1–34, May 2022. URL: https:
//dl.acm.org/doi/10.1145/3448976.

[28] Boyuan Chen, Mingzhi Wen, Yong Shi, Dayi Lin, Gopi Krishnan Rajbahadur,
and Zhen Ming (Jack) Jiang. Towards training reproducible deep learning mod-
els. In Proceedings of the 44th International Conference on Software Engineer-
ing, ICSE ’22, page 2202–2214, New York, NY, USA, 2022. Association for
Computing Machinery. URL: https://doi.org/10.1145/3510003.3510163.

[29] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya
Ghose, and Tim Menzies. A deep learning model for estimating story points.
IEEE Transactions on Software Engineering, 45(7):637–656, 2018.

[30] William Gemmell Cochran. Sampling techniques. john wiley & sons, 1977.

[31] Pierre-Olivier Côté, Amin Nikanjam, Nafisa Ahmed, Dmytro Humeniuk, and
Foutse Khomh. Data cleaning and machine learning: a systematic literature
review. Automated Software Engineering, 31(2):54, 2024.

[32] Domenico Cotroneo, Roberto Pietrantuono, Stefano Russo, and Kishor Trivedi.
How do bugs surface? a comprehensive study on the characteristics of software
bugs manifestation. Journal of Systems and Software, 113:27–43, 2016.

[33] Roland Croft, M Ali Babar, and M Mehdi Kholoosi. Data quality for software
vulnerability datasets. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 121–133. IEEE, 2023.

[34] Roland Croft, Yongzheng Xie, and Muhammad Ali Babar. Data preparation
for software vulnerability prediction: A systematic literature review. IEEE
Transactions on Software Engineering, 49(3):1044–1063, 2022.

[35] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Com-
piler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
international symposium on software testing and analysis, pages 95–105, 2018.

[36] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr
Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebas-
tian Thrun, and Jeff Dean. A guide to deep learning in healthcare. Nature
medicine, 25(1):24–29, 2019.

https://dl.acm.org/doi/10.1145/3448976
https://dl.acm.org/doi/10.1145/3448976
https://doi.org/10.1145/3510003.3510163

115

[37] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vul-
nerability dataset with code changes and cve summaries. In Proceedings of the
17th International Conference on Mining Software Repositories, pages 508–512,
2020.

[38] Yuanrui FAN, Xin XIA, Daniel A COSTA, David LO, Ahmed E HASSAN, and
Shanping LI. The impact of changes mislabeled by szz on just-in-time defect
prediction.(2019). IEEE Transactions on Software Engineering, pages 1–26,
2019.

[39] Benôıt Frénay, Ata Kabán, et al. A comprehensive introduction to label noise.
In ESANN. Citeseer, 2014.

[40] Benôıt Frénay and Michel Verleysen. Classification in the presence of label
noise: a survey. IEEE transactions on neural networks and learning systems,
25(5):845–869, 2013.

[41] Michael Fu and Chakkrit Tantithamthavorn. Gpt2sp: A transformer-based agile
story point estimation approach. IEEE Transactions on software engineering,
49(2):611–625, 2022.

[42] Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based
line-level vulnerability prediction. In Proceedings of the 19th International Con-
ference on Mining Software Repositories, pages 608–620, 2022.

[43] GeeksforGeeks. Best ides for machine learning. https://www.geeksforgeeks.
org/best-ides-for-machine-learning/. Accessed on June 29, 2024.

[44] GeeksforGeeks. Best ides for machine learning. https://www.geeksforgeeks.
org/best-ides-for-machine-learning/. Accessed on December 25, 2023.

[45] Görkem Giray, Kwabena Ebo Bennin, Ömer Köksal, Önder Babur, and Bedir
Tekinerdogan. On the use of deep learning in software defect prediction. Journal
of Systems and Software, 195:111537, 2023.

[46] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop
and Conference Proceedings, 2010.

[47] Ian Goodfellow. Deep learning, volume 196. MIT press, 2016.

[48] Marco Gori, Alessandro Betti, and Stefano Melacci. Machine Learning: A
constraint-based approach. Elsevier, 2023.

[49] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics, 37(3):362–386, 2020.

https://www.geeksforgeeks.org/best-ides-for-machine-learning/
https://www.geeksforgeeks.org/best-ides-for-machine-learning/
https://www.geeksforgeeks.org/best-ides-for-machine-learning/
https://www.geeksforgeeks.org/best-ides-for-machine-learning/

116

[50] Roger Grosse. Lecture 15: Exploding and vanishing gradients. University of
Toronto Computer Science, 2017.

[51] Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. Duplicate bug report
detection using dual-channel convolutional neural networks. In Proceedings of
the 28th International Conference on Program Comprehension, pages 117–127,
2020.

[52] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu
Ubayashi. Deepjit: an end-to-end deep learning framework for just-in-time
defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pages 34–45. IEEE, 2019.

[53] Shuo Hong, Hailong Sun, Xiang Gao, and Shin Hwei Tan. Investigating and de-
tecting silent bugs in pytorch programs. In 2024 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 272–283.
IEEE, 2024.

[54] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. Taxonomy of real faults in deep learning sys-
tems. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE ’20.

[55] Ivana Clairine Irsan, Ting Zhang, Ferdian Thung, Kisub Kim, and David Lo.
Multi-modal api recommendation. In 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 272–283.
IEEE, 2023.

[56] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A com-
prehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, page 510–520,
Tallinn Estonia, August 2019. ACM. URL: https://dl.acm.org/doi/10.

1145/3338906.3338955.

[57] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A com-
prehensive study on deep learning bug characteristics. ESEC/FSE 2019, page
510–520, New York, NY, USA, 2019. Association for Computing Machinery.
URL: https://doi.org/10.1145/3338906.3338955.

[58] Foad Jafarinejad, Krishna Narasimhan, and Mira Mezini. Nerdbug: Automated
bug detection in neural networks. In Proceedings of the 1st ACM International
Workshop on AI and Software Testing/Analysis, AISTA 2021, page 13–16, New
York, NY, USA, 2021. Association for Computing Machinery. URL: https:
//doi.org/10.1145/3464968.3468409.

https://dl.acm.org/doi/10.1145/3338906.3338955
https://dl.acm.org/doi/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3464968.3468409
https://doi.org/10.1145/3464968.3468409

117

[59] Sigma Jahan, Mehil B Shah, and Mohammad Masudur Rahman. Towards
understanding the challenges of bug localization in deep learning systems. arXiv
preprint arXiv:2402.01021, 2024.

[60] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris
Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study
of just-in-time quality assurance. IEEE Transactions on Software Engineering,
39(6):757–773, 2012.

[61] Hossein Keshavarz and Meiyappan Nagappan. Apachejit: a large dataset for
just-in-time defect prediction. In Proceedings of the 19th international confer-
ence on mining software repositories, pages 191–195, 2022.

[62] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. Dealing with
noise in defect prediction. In Proceedings of the 33rd International Conference
on Software Engineering, pages 481–490, 2011.

[63] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ-
ence functions. In International conference on machine learning, pages 1885–
1894. PMLR, 2017.

[64] Maya Krishnan. Against interpretability: a critical examination of the inter-
pretability problem in machine learning. Philosophy & Technology, 33(3):487–
502, 2020.

[65] Tuan Dung Lai. Towards the generation of machine learning defect reports. In
2021 36th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 1038–1042. IEEE, 2021.

[66] Alina Lazar, Sarah Ritchey, and Bonita Sharif. Generating duplicate bug
datasets. In Proceedings of the 11th working conference on mining software
repositories, pages 392–395, 2014.

[67] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Effi-
cient backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer,
2002.

[68] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner:
A deep learning-based clone detection approach. In 2017 IEEE international
conference on software maintenance and evolution (ICSME), pages 249–260.
IEEE, 2017.

[69] Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong
Li. Robust learning of deep predictive models from noisy and imbalanced soft-
ware engineering datasets. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–13, 2022.

118

[70] Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, Li Fei-Fei, Matei Zaharia,
Ce Zhang, and James Zou. Advances, challenges and opportunities in creating
data for trustworthy ai. Nature Machine Intelligence, 4(8):669–677, 2022.

[71] Yunkai Liang, Yun Lin, Xuezhi Song, Jun Sun, Zhiyong Feng, and Jin Song
Dong. gdefects4dl: a dataset of general real-world deep learning program de-
fects. In Proceedings of the ACM/IEEE 44th International Conference on Soft-
ware Engineering: Companion Proceedings, pages 90–94, 2022.

[72] Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with multiple
minimum supports. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 337–341, 1999.

[73] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang.
On the reproducibility and replicability of deep learning in software engineering.
ACM Trans. Softw. Eng. Methodol., 31(1), oct 2021. URL: https://doi.org/
10.1145/3477535.

[74] Hui Liu, Jiahao Jin, Zhifeng Xu, Yanzhen Zou, Yifan Bu, and Lu Zhang. Deep
learning based code smell detection. IEEE transactions on Software Engineer-
ing, 47(9):1811–1837, 2019.

[75] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Un-
derstanding the difficulty of training transformers. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 5747–
5763, Online, November 2020. Association for Computational Linguistics. URL:
https://aclanthology.org/2020.emnlp-main.463.

[76] Yanbin Liu, Wen Zhang, Guangjie Qin, and Jiangpeng Zhao. A comparative
study on the effect of data imbalance on software defect prediction. Procedia
Computer Science, 214:1603–1616, 2022.

[77] Guoming Long and Tao Chen. On reporting performance and accuracy bugs for
deep learning frameworks: An exploratory study from github. In Proceedings of
the 26th International Conference on Evaluation and Assessment in Software
Engineering, pages 90–99, 2022.

[78] José Antonio Hernández López, Boqi Chen, Tushar Sharma, and Dániel Varró.
On inter-dataset code duplication and data leakage in large language models.
arXiv preprint arXiv:2401.07930, 2024.

[79] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. Deep-
gauge: Multi-granularity testing criteria for deep learning systems. In Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE ’18, page 120–131, New York, NY, USA, 2018. Association for
Computing Machinery. URL: https://doi.org/10.1145/3238147.3238202.

https://doi.org/10.1145/3477535
https://doi.org/10.1145/3477535
https://aclanthology.org/2020.emnlp-main.463
https://doi.org/10.1145/3238147.3238202

119

[80] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. Robust
and rapid adaption for concept drift in software system anomaly detection. In
2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), pages 13–24. IEEE, 2018.

[81] Parvez Mahbub, Ohiduzzaman Shuvo, and Mohammad Masudur Rahman.
Defectors: A large, diverse python dataset for defect prediction. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pages 393–397. IEEE, 2023.

[82] Zaheed Mahmood, David Bowes, Peter CR Lane, and Tracy Hall. What is the
impact of imbalance on software defect prediction performance? In Proceedings
of the 11th international conference on predictive models and data analytics in
software engineering, pages 1–4, 2015.

[83] Tarek Makkouk, Dong Jae Kim, and Tse-Hsun Peter Chen. An empirical study
on performance bugs in deep learning frameworks. In 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 35–46,
2022.

[84] Dongyu Mao, Lingchao Chen, and Lingming Zhang. An extensive study on
cross-project predictive mutation testing. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), pages 160–171. IEEE,
2019.

[85] Machine Learning Mastery. Building a logistic regres-
sion classifier. https://machinelearningmastery.com/

building-a-logistic-regression-classifier-in-pytorch/. Accessed on
21 June, 2024.

[86] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica,
22(3):276–282, 2012.

[87] Shane McIntosh and Yasutaka Kamei. Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction. In Proceedings
of the 40th international conference on software engineering, pages 560–560,
2018.

[88] Montassar Ben Messaoud, Asma Miladi, Ilyes Jenhani, Mohamed Wiem
Mkaouer, and Lobna Ghadhab. Duplicate bug report detection using an
attention-based neural language model. IEEE Transactions on Reliability, 2022.

[89] Saikat Mondal, Mohammad Masudur Rahman, and Chanchal K. Roy. Can is-
sues reported at stack overflow questions be reproduced? an exploratory study.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR), pages 479–489, 2019.

https://machinelearningmastery.com/building-a-logistic-regression-classifier-in-pytorch/
https://machinelearningmastery.com/building-a-logistic-regression-classifier-in-pytorch/

120

[90] Saikat Mondal, Mohammad Masudur Rahman, and Chanchal K Roy. Can
we identify stack overflow questions requiring code snippets? investigating the
cause & effect of missing code snippets. arXiv preprint arXiv:2402.04575, 2024.

[91] Saikat Mondal, Mohammad Masudur Rahman, Chanchal K Roy, and Kevin
Schneider. The reproducibility of programming-related issues in stack overflow
questions. Empirical Software Engineering, 27(3):62, 2022.

[92] Saikat Mondal and Banani Roy. Reproducibility of issues reported in stack
overflow questions: Challenges, impact & estimation. Impact & Estimation.

[93] Mohammad Mehdi Morovati, Amin Nikanjam, Foutse Khomh, and Zhen
Ming (Jack) Jiang. Bugs in machine learning-based systems: A faultload bench-
mark. Empirical Softw. Engg., 28(3), apr 2023. URL: https://doi.org/10.
1007/s10664-023-10291-1.

[94] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. The impact of nonde-
terminism on reproducibility in deep reinforcement learning. 2018.

[95] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Sci-
cluna, Simon Lacoste-Julien, and Ioannis Mitliagkas. A modern take on the
bias-variance tradeoff in neural networks. arXiv preprint arXiv:1810.08591,
2018.

[96] John Ashworth Nelder and Robert WM Wedderburn. Generalized linear mod-
els. Journal of the Royal Statistical Society Series A: Statistics in Society,
135(3):370–384, 1972.

[97] Negin Nematollahi, Mohammad Sadrosadati, Hajar Falahati, Marzieh Barkhor-
dar, Mario Paulo Drumond, Hamid Sarbazi-Azad, and Babak Falsafi. Efficient
nearest-neighbor data sharing in gpus. ACM Transactions on Architecture and
Code Optimization (TACO), 18(1):1–26, 2020.

[98] Xu Nie, Ningke Li, Kailong Wang, Shangguang Wang, Xiapu Luo, and Haoyu
Wang. Understanding and tackling label errors in deep learning-based vulnera-
bility detection (experience paper). In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 52–63, 2023.

[99] Youssef Esseddiq Ouatiti, Mohammed Sayagh, Noureddine Kerzazi, Bram
Adams, and Ahmed E Hassan. The impact of concept drift and data leak-
age on log level prediction models. Empirical Software Engineering, 29(5):1–37,
2024.

[100] R Pascanu. On the difficulty of training recurrent neural networks. arXiv
preprint arXiv:1211.5063, 2013.

https://doi.org/10.1007/s10664-023-10291-1
https://doi.org/10.1007/s10664-023-10291-1

121

[101] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. Commun. ACM,
62(11):137–145, oct 2019. URL: https://doi.org/10.1145/3361566.

[102] Matilda QR Pembury Smith and Graeme D Ruxton. Effective use of the mc-
nemar test. Behavioral Ecology and Sociobiology, 74:1–9, 2020.

[103] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. Problems and op-
portunities in training deep learning software systems: An analysis of variance.
In Proceedings of the 35th IEEE/ACM international conference on automated
software engineering, pages 771–783, 2020.

[104] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. Under-
standing and classifying the quality of technical forum questions. In 2014 14th
International Conference on Quality Software, pages 343–352, 2014.

[105] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. Deeplinedp: To-
wards a deep learning approach for line-level defect prediction. IEEE Transac-
tions on Software Engineering, 49(1):84–98, 2022.

[106] PyTorch. Pytorch v1.6. https://pytorch.org/docs/1.6.0/. Accessed on 12
June, 2024.

[107] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

[108] Mohammad M Rahman, Foutse Khomh, and Marco Castelluccio. Works for
me! cannot reproduce–a large scale empirical study of non-reproducible bugs.
Empirical Software Engineering, 27(5):111, 2022.

[109] Mohammad Masudur Rahman, Foutse Khomh, and Marco Castelluccio. Why
are some bugs non-reproducible? : –an empirical investigation using data fu-
sion–. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 605–616, 2020.

[110] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14:131–
164, 2009.

[111] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo. “everyone wants to do the model work, not the
data work”: Data cascades in high-stakes ai. In proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–15, 2021.

[112] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional, 2010.

https://doi.org/10.1145/3361566
https://pytorch.org/docs/1.6.0/

122

[113] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. On challenges in machine learning model manage-
ment. 2015.

[114] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pages 618–626, 2017.

[115] Mehil Shah. mehilshah/bug reproducibility dl bugs. https://github.com/

mehilshah/Bug_Reproducibility_DL_Bugs. Accessed on January 3, 2024.

[116] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical
image analysis. Annual review of biomedical engineering, 19:221–248, 2017.

[117] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-
of-the-art deep learning software tools. In 2016 7th International Conference
on Cloud Computing and Big Data (CCBD), pages 99–104. IEEE, 2016.

[118] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. The significance of bug
report elements. Empirical Software Engineering, 25:5255–5294, 2020.

[119] Qinbao Song, Yuchen Guo, and Martin Shepperd. A comprehensive investi-
gation of the role of imbalanced learning for software defect prediction. IEEE
Transactions on Software Engineering, 45(12):1253–1269, 2018.

[120] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[121] Stack Exchange. All sites - stack exchange. https://stackexchange.com/

sites?view=list, 2023. Accessed on December 12, 2023.

[122] Stack Exchange Inc. Stack Exchange Data Explorer. https://data.

stackexchange.com/, 2023. Accessed on December 7, 2023.

[123] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. UNIX network pro-
gramming. 1: The sockets networking API / W. Richard Stevens; Bill Fenner;
Andrew M. Rudoff. Addison-Wesley professional computing series. Addison-
Wesley, Boston, 3rd ed edition, 2013.

[124] Magdalena Szumilas. Explaining odds ratios. Journal of the Canadian academy
of child and adolescent psychiatry, 19(3):227, 2010.

[125] Deepak Talwar, Sachin Guruswamy, Naveen Ravipati, and Magdalini Eirinaki.
Evaluating validity of synthetic data in perception tasks for autonomous vehi-
cles. In 2020 IEEE International Conference On Artificial Intelligence Testing
(AITest), pages 73–80. IEEE, 2020.

https://github.com/mehilshah/Bug_Reproducibility_DL_Bugs
https://github.com/mehilshah/Bug_Reproducibility_DL_Bugs
https://stackexchange.com/sites?view=list
https://stackexchange.com/sites?view=list
https://data.stackexchange.com/
https://data.stackexchange.com/

123

[126] Florian Tambon, Amin Nikanjam, Le An, Foutse Khomh, and Giuliano Anto-
niol. Silent bugs in deep learning frameworks: an empirical study of keras and
tensorflow. Empirical Software Engineering, 29(1):10, 2024.

[127] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara,
and Kenichi Matsumoto. The impact of mislabelling on the performance and
interpretation of defect prediction models. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 812–823.
IEEE, 2015.

[128] Keras Team. Keras documentation: Python & numpy utilities. https://

keras.io/2.16/api/utils/python_utils/. Accessed on 6 June, 2024.

[129] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques
Klein, and Tegawendé F Bissyandé. Evaluating representation learning of code
changes for predicting patch correctness in program repair. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engi-
neering, pages 981–992, 2020.

[130] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bot-
tleneck principle. In 2015 IEEE Information Theory Workshop (ITW), page
1–5, April 2015. URL: https://ieeexplore.ieee.org/abstract/document/
7133169.

[131] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech,
Sudharshan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben,
Philippe Navaux, et al. Understanding gpu errors on large-scale hpc systems
and the implications for system design and operation. In 2015 IEEE 21st In-
ternational Symposium on High Performance Computer Architecture (HPCA),
pages 331–342. IEEE, 2015.

[132] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. Using pre-trained models to boost code
review automation. In Proceedings of the 44th international conference on soft-
ware engineering, pages 2291–2302, 2022.

[133] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[134] A Vaswani. Attention is all you need. Advances in Neural Information Process-
ing Systems, 2017.

[135] Daisuke Wakabayashi. Self-driving uber car kills pedestrian in arizona,
where robots roam. https://www.nytimes.com/2018/03/19/technology/

uber-driverless-fatality.html, Mar 2018. Accessed on December 17, 2023.

https://keras.io/2.16/api/utils/python_utils/
https://keras.io/2.16/api/utils/python_utils/
https://ieeexplore.ieee.org/abstract/document/7133169
https://ieeexplore.ieee.org/abstract/document/7133169
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

124

[136] Wenhan Wang, Yanzhou Li, Anran Li, Jian Zhang, Wei Ma, and Yang Liu. An
empirical study on noisy label learning for program understanding. In Proceed-
ings of the IEEE/ACM 46th International Conference on Software Engineering,
ICSE ’24, New York, NY, USA, 2024. Association for Computing Machinery.
URL: https://doi.org/10.1145/3597503.3639217.

[137] Moshi Wei, Nima Shiri Harzevili, YueKai Huang, Jinqiu Yang, Junjie Wang,
and Song Wang. Demystifying and detecting misuses of deep learning apis.
In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pages 1–12, 2024.

[138] Weights and Biases. Weights and biases: An ai developer platform. https:

//wandb.ai/site, 2021. Accessed 21 February, 2024.

[139] Steven Euijong Whang and Jae-Gil Lee. Data collection and quality challenges
for deep learning. Proceedings of the VLDB Endowment, 13(12):3429–3432,
2020.

[140] Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo. Data quality matters: A
case study on data label correctness for security bug report prediction. IEEE
Transactions on Software Engineering, 48(7):2541–2556, 2021.

[141] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Jingwei Xu, and Xiaoxing Ma.
Data quality matters: A case study of obsolete comment detection. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 781–793. IEEE, 2023.

[142] Zhengkang Xu, Shikai Guo, Yumiao Wang, Rong Chen, Hui Li, Xiaochen Li,
and He Jiang. Code comment inconsistency detection based on confidence
learning. IEEE Transactions on Software Engineering, 2024.

[143] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
Exposing numerical bugs in deep learning via gradient back-propagation. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
627–638, 2021.

[144] Yanming Yang, Xin Xia, David Lo, and John Grundy. A survey on deep learning
for software engineering. ACM Comput. Surv., 54(10s), sep 2022. URL: https:
//doi.org/10.1145/3505243.

[145] Yilin Yang, Tianxing He, Zhilong Xia, and Yang Feng. A comprehensive em-
pirical study on bug characteristics of deep learning frameworks. Information
and Software Technology, 151:107004, 2022.

[146] Robert K Yin. Case study research: Design and methods, volume 5. sage, 2009.

https://doi.org/10.1145/3597503.3639217
https://wandb.ai/site
https://wandb.ai/site
https://doi.org/10.1145/3505243
https://doi.org/10.1145/3505243

125

[147] Yining Yin, Yang Feng, Shihao Weng, Zixi Liu, Yuan Yao, Yichi Zhang, Zhi-
hong Zhao, and Zhenyu Chen. Dynamic data fault localization for deep neural
networks. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1345–1357, 2023.

[148] Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. Deep
just-in-time defect prediction: how far are we? In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2021, page 427–438, New York, NY, USA, 2021. Association for Computing
Machinery. URL: https://doi.org/10.1145/3460319.3464819.

[149] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong
Liu. Learning to handle exceptions. In Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, pages 29–41, 2020.

[150] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. An em-
pirical study of common challenges in developing deep learning applications. In
2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), pages 104–115. IEEE, 2019.

[151] Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine Irsan,
Bowen Xu, Ferdian Thung, David Lo, and Lingxiao Jiang. Duplicate bug report
detection: How far are we? ACM Transactions on Software Engineering and
Methodology, 32(4):1–32, 2023.

[152] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
An empirical study on tensorflow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2018, page 129–140, New York, NY, USA, 2018. Association for Computing
Machinery. URL: https://doi.org/10.1145/3213846.3213866.

[153] Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung,
and Tao Xie. Detecting numerical bugs in neural network architectures. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
826–837, 2020.

[154] Henghui Zhao, Yanhui Li, Fanwei Liu, Xiaoyuan Xie, and Lin Chen. State and
tendency: an empirical study of deep learning question&answer topics on stack
overflow. Science China Information Sciences, 64:1–23, 2021.

[155] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. De-
vign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in neural information processing
systems, 32, 2019.

https://doi.org/10.1145/3460319.3464819
https://doi.org/10.1145/3213846.3213866

Appendix A

Supplementary details

The following replication packages contain all datasets, code, and materials needed

to reproduce the research findings from two of our studies on deep learning bugs.

A.1 Towards Understanding the Impact of Data Bugs on Deep

Learning Models in Software Engineering

Replication Package: https://shorturl.at/IvNTN

A.2 Towards Enhancing the Reproducibility of Deep Learning Bugs:

An Empirical Study

Replication Package: https://shorturl.at/AtNOO

126

https://shorturl.at/IvNTN
https://shorturl.at/AtNOO

Appendix B

Forms for the User Study

The following section contains the forms provided to the participants of the user

study in Chapter 3.

B.1 Control Group Form

The first form, included here, was provided to the control group. This group did

not receive any hints during the study, which allowed for the measurement of the

reproducibility of deep learning bugs without our findings.

127

Surveys Report Portals My Panel Resources
Enter search

Help

Questions

Edit

New text

Edit Delete

New text

New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Welcome, raisedal My profile Logout

main folder raisedal mehilshah Group - 1C Questions

Menu

Questions

Branching

Custom question numbers

Set page breaks

Remove page breaks

Preview survey

Reports and data

Survey home

Recent items

mehilshah

Group - 4E

Group - 3E

Group - 2E

Group - 1E

raisedal

main folder

Answering Follow-up Quest

usmimukherjee

Guide

The following steps are
recommended for your survey:

Create questions

Add conditional branching

Customize look and feel

Set privacy and behavior

Translate survey

Publish survey

Analyze collected data

Group - 1C

Section 1

Introduction

Hello there!
Welcome to this survey! We are a group of researchers from Dalhousie University, Canada. Recently, we conducted an empirical study
involving 85 reproducible bugs from Stack Overflow posts. Our aim was to understand two main aspects: (1) the edit actions that can be
employed to complete code snippets for bug reproduction and (2) the information that enhances the reproducibility of bug reports. Our
investigation has yielded several interesting findings, and we are seeking your feedback on them.

We reproduced 85 bugs and discovered they could be reproduced using 10 edit actions. To enhance their reproducibility, 5 main information
categories need to be present. The edit actions and information categories are described below.

Edit Actions
Input Data Generation: Generating input data which simulates the data used for training the model.
Neural Network Construction: Reconstructing or modifying the neural network based on the information provided
Hyperparameter Initialization: Initializing the hyperparameters for training, such as batch size and number of epochs
Import Addition and Dependency Resolution: Determining the dependencies in the code snippet and adding the missing imports.
Logging: Adding appropriate logging statements to capture relevant information during reproduction
Obsolete Parameter Removal: Removing outdated parameters or functions to match the parameters of the latest library versions
Compiler Error Resolution: Debugging and resolving compiler errors that arise due to the errors in the provided code snippet.
Dataset Procurement: Acquiring the datasets and using them to train the model
Downloading Models & Tokenizers: Fetching pre-trained models and tokenizers from external sources.
Version Migration: Updating the code to adapt the changes introduced in newer library or framework versions.

Information Categories
Data: Shape of the input data, type of data, data distribution.
Model: Neural network architecture, number of layers, neurons, activation function for layers.
Hyperparameters: Batch size, epochs, optimizers, loss function.
Code Snippet: Training code snippet, evaluation script, data preprocessing, and transformation operations.
Logs: Compiler error logs, training error logs

[Edit Delete]

 ---------- page break ----------

Section 2

Demographics

Question 1

1. What is your relevant work experience with deep learning?

<1 Year
1-5 Years
5-10 Years
>10 Years

Question 2

2. What is your relevant experience with deep learning bug fixing?

<1 Year
1-5 Years
5-10 Years
>10 Years

Question 3

3. What is your current occupation?

Software Practitioner (Software Engineer, Deep Learning Engineer, Machine Learning Engineer etc.)
Researcher (Masters/Doctoral Student, PostDoc, Faculty)

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Question 4

4. What are the deep learning frameworks you have worked with?

Tensorflow

PyTorch

Keras

Other

Question 5

5. What challenges are associated with reproducing deep learning bugs in your day-to-day activities?

 ---------- page break ----------

Section 3

Bug #1
Given the issue description, and the code snippet. Please reproduce the bug, and select the most appropriate edit operations and critical
information needed to reproduce this bug.

To help the reproduction process, we have provided the sample edit operations here.

Original Issue Report: https://stackoverflow.com/questions/59278771/super-low-accuracy-for-neural-network-model

Description:
I followed a tutorial on neural network model evaluation using cross-validation with code (given below). The accuracy was supposed to
be around 95.33% (4.27%) but I got ~Accuracy: 34.00% (13.15%) on a few attempts. The model code seems exactly the same. I
downloaded the data from here as instructed. What could go wrong? Thanks

Code Snippet: You can use this Colab notebook as the base notebook to start the reproduction
process: https://colab.research.google.com/drive/1CH0EKq3Wc2ctcw1kWvAzxe3O7i-FA05f?usp=sharing

[Edit Delete]

Question 6

6. What are the edit operations that could be used to reproduce this bug?

Input Data Generation Neural Network Construction

Hyperparameter Initialization Import Addition and Dependency Resolution

Logging Obsolete Parameter Removal

Compiler Error Resolution Dataset Procurement

Downloading Models and Tokenizers Version Migration

Question 7

7. Why do you think these edit operations could prove useful in reproducing the bug?

Question 8

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

8. What are the critical information components that could help the reproducibility of this bug?

Data

Hyperparameters

Model

Code Snippet

Logs

Question 9

9. How do you think the selected critical information could be useful in reproducing the bug?

Question 10

10. Did you implement any additional operations or actions beyond those suggested by us? Please let us know your thoughts.

 ---------- page break ----------

Section 4

Bug #2
Given the issue description, and the code snippet. Please reproduce the bug, select the most appropriate edit operations and critical
information needed to reproduce this bug.

To help the reproduction process, we have provided the sample edit operations here.

Original Issue Report: https://stackoverflow.com/questions/39525358/neural-network-accuracy-optimization

Description:

I have constructed an ANN in keras which has 1 input layer(3 inputs), one output layer (1 output) and two hidden layers with with 12 and
3 nodes respectively, as shown below in the code.

The dataset has 4 columns: 3 columns with values in the range [60, 70] and the target variable is binary (0/1 output)

so after 150 epochs i get: loss: 0.6932 - acc: 0.5000 - val_loss: 0.6970 - val_acc: 0.1429

My question is: how could i modify my NN in order to achieve higher accuracy?

Code Snippet: You can use this Colab notebook as the base notebook to start the reproduction
process: https://colab.research.google.com/drive/1O8y5vYDP7ODPcvi1cGNraMOP8iXxlLhM?usp=sharing

[Edit Delete]

Question 11

11. What are the edit operations that could be used to reproduce this bug?

Input Data Generation Neural Network Construction

Hyperparameter Initialization Import Addition and Dependency Resolution

Logging Obsolete Parameter Removal

Compiler Error Resolution Dataset Procurement

Downloading Models and Tokenizers Version Migration

Question 12

12. Why do you think these edit operations could prove useful in reproducing the bug?

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New text

New text New question New question from library / other surveys

Edit Add to library Delete

New text New question New question from library / other surveys

Question 13

13. What are the critical information components that could help the reproducibility of this bug?

Data

Hyperparameters

Model

Code Snippet

Logs

Question 14

14. How do you think the selected critical information could be useful in reproducing the bug?

Question 15

15. Did you implement any additional operations or actions beyond those suggested by us? Please let us know your thoughts.

 ---------- page break ----------

Section 5

Unique ID Generation

Question 16

16. Please use this secure link, and enter the Unique ID generated in the following textbox.

If you want to withdraw from the survey, email us with this Unique ID at shahmehil@dal.ca, and we will delete your response.

Unique ID

 ---------- page break ----------

Copyright 1998-2024 ObjectPlanet

132

B.2 Experimental Group Form

The second form, included here, was used by the experimental group. This group

received hints during the study, which aimed to explore the effects of these hints on

the reproducibility of deep learning bugs.

Surveys Report Portals My Panel Resources
Enter search

Help

Questions

Edit

New text

Edit Delete

New text

New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Welcome, raisedal My profile Logout

main folder raisedal mehilshah Group - 1E Questions

Menu

Questions

Branching

Custom question numbers

Set page breaks

Remove page breaks

Preview survey

Reports and data

Survey home

Recent items

mehilshah

Group - 1C

Group - 4E

Group - 3E

Group - 2E

raisedal

main folder

Answering Follow-up Quest

usmimukherjee

Guide

The following steps are
recommended for your survey:

Create questions

Add conditional branching

Customize look and feel

Set privacy and behavior

Translate survey

Publish survey

Analyze collected data

Group - 1E

Section 1

Introduction

Hello there!
Welcome to this survey! We are a group of researchers from Dalhousie University, Canada. Recently, we conducted an empirical study
involving 85 reproducible bugs from Stack Overflow posts. Our aim was to understand two main aspects: (1) the edit actions that can be
employed to complete code snippets for bug reproduction and (2) the information that enhances the reproducibility of bug reports. Our
investigation has yielded several interesting findings, and we are seeking your feedback on them.

We reproduced 85 bugs and discovered they could be reproduced using 10 edit actions. To enhance their reproducibility, 5 main information
categories need to be present. The edit actions and information categories are described below.

Edit Actions
Input Data Generation: Generating input data which simulates the data used for training the model.
Neural Network Construction: Reconstructing or modifying the neural network based on the information provided
Hyperparameter Initialization: Initializing the hyperparameters for training, such as batch size and number of epochs
Import Addition and Dependency Resolution: Determining the dependencies in the code snippet and adding the missing imports.
Logging: Adding appropriate logging statements to capture relevant information during reproduction
Obsolete Parameter Removal: Removing outdated parameters or functions to match the parameters of the latest library versions
Compiler Error Resolution: Debugging and resolving compiler errors that arise due to the errors in the provided code snippet.
Dataset Procurement: Acquiring the datasets and using them to train the model
Downloading Models & Tokenizers: Fetching pre-trained models and tokenizers from external sources.
Version Migration: Updating the code to adapt the changes introduced in newer library or framework versions.

Information Categories
Data: Shape of the input data, type of data, data distribution.
Model: Neural network architecture, number of layers, neurons, activation function for layers.
Hyperparameters: Batch size, epochs, optimizers, loss function.
Code Snippet: Training code snippet, evaluation script, data preprocessing, and transformation operations.
Logs: Compiler error logs, training error logs

[Edit Delete]

 ---------- page break ----------

Section 2

Demographics

Question 1

1. What is your relevant work experience with deep learning?

<1 Year
1-5 Years
5-10 Years
>10 Years

Question 2

2. What is your relevant experience with deep learning bug fixing?

<1 Year
1-5 Years
5-10 Years
>10 Years

Question 3

3. What is your current occupation?

Software Practitioner (Software Engineer, Deep Learning Engineer, Machine Learning Engineer etc.)
Researcher (Masters/Doctoral Student, PostDoc, Faculty)

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Question 4

4. What are the deep learning frameworks you have worked with?

Tensorflow

PyTorch

Keras

Other

Question 5

5. What challenges are associated with reproducing deep learning bugs in your day-to-day activities?

 ---------- page break ----------

Section 3

Bug #1
Given the issue description, and the code snippet. Please reproduce the bug, and select the most appropriate edit operations and critical
information needed to reproduce this bug.

To help the reproduction process, we have provided the sample edit operations here.

Original Issue Report: https://stackoverflow.com/questions/59278771/super-low-accuracy-for-neural-network-model

Description:
I followed a tutorial on neural network model evaluation using cross-validation with code (given below). The accuracy was supposed to
be around 95.33% (4.27%) but I got ~Accuracy: 34.00% (13.15%) on a few attempts. The model code seems exactly the same. I
downloaded the data from here as instructed. What could go wrong? Thanks

Code Snippet: You can use this Colab notebook as the base notebook to start the reproduction
process: https://colab.research.google.com/drive/1CH0EKq3Wc2ctcw1kWvAzxe3O7i-FA05f?usp=sharing

Hints:

1. Code Snippet, Logs and Data can be useful information for reproducing the bug.
2. Input Data Generation, Import Addition, Version Migration, Hyperparameter Initialization and Compiler Error Resolution can be

useful edit actions for reproducing the bug.
3. Focus on the statement: "I followed a tutorial on neural network model evaluation using cross-validation with code (given

below)".

[Edit Delete]

Question 6

6. What are the edit operations that could be used to reproduce this bug?

Input Data Generation Neural Network Construction

Hyperparameter Initialization Import Addition and Dependency Resolution

Logging Obsolete Parameter Removal

Compiler Error Resolution Dataset Procurement

Downloading Models and Tokenizers Version Migration

Question 7

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New question New question from library / other surveys

7. Why do you think these edit operations could prove useful in reproducing the bug?

Question 8

8. What are the critical information components that could help the reproducibility of this bug?

Data

Hyperparameters

Model

Code Snippet

Logs

Question 9

9. How do you think the selected critical information could be useful in reproducing the bug?

Question 10

10. Did you implement any additional operations or actions beyond those suggested by us? Please let us know your thoughts.

 ---------- page break ----------

Section 4

Bug #2
Given the issue description, and the code snippet. Please reproduce the bug, select the most appropriate edit operations and critical
information needed to reproduce this bug.

To help the reproduction process, we have provided the sample edit operations here.

Original Issue Report: https://stackoverflow.com/questions/39525358/neural-network-accuracy-optimization

Description:

I have constructed an ANN in keras which has 1 input layer(3 inputs), one output layer (1 output) and two hidden layers with with 12 and
3 nodes respectively, as shown below in the code.

The dataset has 4 columns: 3 columns with values in the range [60, 70] and the target variable is binary (0/1 output)

so after 150 epochs i get: loss: 0.6932 - acc: 0.5000 - val_loss: 0.6970 - val_acc: 0.1429

My question is: how could i modify my NN in order to achieve higher accuracy?

Code Snippet: You can use this Colab notebook as the base notebook to start the reproduction
process: https://colab.research.google.com/drive/1O8y5vYDP7ODPcvi1cGNraMOP8iXxlLhM?usp=sharing

Hints:

1. Logs, Model and Code Snippet can be useful information for reproducing the bug.
2. Neural Network Construction, Import Addition, Hyperparameter Initialization, Logging, and Dataset Procurement can be useful

edit actions for reproducing the bug.
3. Focus on the statement: "so after 150 epochs i get: loss: 0.6932 - acc: 0.5000 - val_loss: 0.6970 - val_acc: 0.1429"

[Edit Delete]

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

Split section New text New question New question from library / other surveys

Edit Add to library Delete

New text

Edit Delete

New text

New text New question New question from library / other surveys

Edit Add to library Delete

New text New question New question from library / other surveys

Question 11

11. What are the edit operations that could be used to reproduce this bug?

Input Data Generation Neural Network Construction

Hyperparameter Initialization Import Addition and Dependency Resolution

Logging Obsolete Parameter Removal

Compiler Error Resolution Dataset Procurement

Downloading Models and Tokenizers Version Migration

Question 12

12. What are the critical information components that could help the reproducibility of this bug?

Data

Hyperparameters

Model

Code Snippet

Logs

Question 13

13. How do you think the selected critical information could be useful in reproducing the bug?

Question 14

14. How do you think the selected critical information could be useful in reproducing the bug?

Question 15

15. Did you implement any additional operations or actions beyond those suggested by us? Please let us know your thoughts.

 ---------- page break ----------

Section 5

Unique ID Generation

Question 16

16. Please use this secure link, and enter the Unique ID generated in the following textbox.

If you want to withdraw from the survey, email us with this Unique ID at shahmehil@dal.ca, and we will delete your response.

Unique ID

 ---------- page break ----------

Copyright 1998-2024 ObjectPlanet

	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Contribution
	Related Publications
	Outline of the report

	Background
	Deep Learning Bugs
	Training Issues
	Model Issues
	Tensor and Input Issues
	API Issues
	GPU Issues

	Deep Learning Bug Reports
	Data Quality Issues in Software Engineering Datasets
	Model Explanation
	Summary

	Towards Understanding the Impact of Data Bugs on Deep Learning Models in Software Engineering
	Introduction
	Methodology
	Data Type Selection
	Study Design
	Experimental Setup
	Quantitative Analysis
	Post-Hoc Analysis
	Validating the Derived Findings

	Study Findings
	RQ1: How do data quality and preprocessing issues in code-based data affect the training behaviour of deep learning models?
	RQ2: How do data quality and preprocessing issues in text-based data affect the training behaviour of deep learning models?
	RQ3: How do data quality and preprocessing issues in metric-based data affect the training behaviour of deep learning models?
	RQ4: How well do our findings on data quality and preprocessing issues generalize to other code-based, text-based, and metric-based datasets?
	Statistical Signifiance Tests

	Implications for Bug Reproduction
	Related Work
	Threats to Validity
	Summary

	Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study
	Introduction
	Motivating Example
	Study Methodology
	Selection of Data Sources
	Dataset Construction
	Environment Setup
	Manual Classification of Posts
	Verification of Bug Reproduction
	Identifying Type Specific Information and Edit Actions
	User Study
	User Study Results Analysis

	Study Findings
	RQ1: Which edit actions are crucial for reproducing deep learning bugs?
	RQ2: What component information and edit actions are useful for reproducing specific types of deep learning bugs?
	RQ3: How do the suggested edit actions and component information affect the reproducibility of deep learning bugs?

	Discussions
	Reproducibility of Deep Learning Bugs
	Challenges in Reproducing Deep Learning Bugs: A Comparison between Stack Overflow and GitHub

	Threats to Validity
	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Limitations
	Limitations of Study 1: Understanding Data Bug Symptoms
	Limitations of Study 2: Enhancing Bug Reproducibility

	Future Work
	Analysis and Verification of Bug Manifestations
	Improving Bug Reporting
	Generating Reproducibility Scripts for Bug Reports

	Our Future Research Plan
	Minimal Working Example Generator
	Reproducibility Script Generator
	Containerized Reproduction Environment

	Bibliography
	Supplementary details
	Towards Understanding the Impact of Data Bugs on Deep Learning Models in Software Engineering
	Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study

	Forms for the User Study
	Control Group Form
	Experimental Group Form

