
IMPROVING BUG LOCALIZATION LEVERAGING LARGE
LANGUAGE MODELS’ REASONING WITH INFORMATION

RETRIEVAL

by

Asif M Samir

Submitted in partial fulfillment of the requirements
for the degree of PhD of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2025

© Copyright by Asif M Samir, 2025

I dedicate this thesis to my parents, whose inspiration and unwavering

support have guided me through every step of my life.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

List of Abbreviations . x

Acknowledgements . 1

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Our Contribution . 4

1.4 Related Publications . 6

1.5 Outline of the Report . 6

Chapter 2 Background . 8

2.1 Program Semantics and Context . 8

2.2 Information Retrieval . 9
2.2.1 Vector Space Model (VSM) 9
2.2.2 Indexing . 10
2.2.3 Document Retrieval . 10

2.3 Word Embedding . 12

2.4 Sequence Modeling . 13
2.4.1 Recurrent Neural Network . 13
2.4.2 Long Short-term Memory and Gated Recurrent Unit Models . 14
2.4.3 Attention Mechanism . 15
2.4.4 Transformers . 16

2.5 Natural Language Modeling . 16

2.6 Cross-Encoders . 17

2.7 Summary . 18

iii

Chapter 3 Improving IR-based Bug Localization with Semantics-
Driven Query Reduction 19

3.1 Introduction . 19

3.2 Motivational Example . 22

3.3 Methodology . 25
3.3.1 Fine-tune Cross-Encoder Model 25
3.3.2 Corpus Indexing . 26
3.3.3 Retrieval of Potentially Buggy Source Documents 26
3.3.4 Relevance Estimation using Cross-Encoder 27
3.3.5 Query Reformulation . 27
3.3.6 Bug Localization . 31

3.4 Experiment . 31
3.4.1 Dataset Construction . 32
3.4.2 Evaluation Metrics . 38
3.4.3 Evaluting IQLoc . 41

3.5 Related Work . 56
3.5.1 IR based Bug Localization . 56
3.5.2 Query Reformulation . 57
3.5.3 Deep Learning for Bug Localization 58

3.6 Threats to Validity . 59

3.7 Summary . 60

Chapter 4 Improved IR-based Bug Localization with Intelligent Rel-
evance Feedback . 62

4.1 Introduction . 62

4.2 Motivational Example . 66

4.3 Methodology . 68
4.3.1 Document Indexing and Retrieval 68
4.3.2 Intelligent Relevance Feedback 69
4.3.3 Query Expansion . 71
4.3.4 Bug Localization . 72

4.4 Experiments . 74
4.4.1 Dataset Construction . 74
4.4.2 Evaluation Metrics . 75
4.4.3 Selection of LLM . 76
4.4.4 Evaluating BRaIn . 77

iv

4.5 Related Work . 86
4.5.1 IR based Bug Localization . 86
4.5.2 Query Reformulation . 86
4.5.3 Deep Learning for Bug Localization 87

4.6 Threats to Validity . 88

4.7 Summary . 88

Chapter 5 Coclusion and Future Works 90

5.1 Conclusion . 90

5.2 Future Work . 91
5.2.1 Impact of Large Language Models on Understanding Source Code 91
5.2.2 Agentic Bug Localization . 92

Bibliography . 94

Appendix A Complimentary Materials 110

A.1 Replication Packages . 110

v

List of Tables

3.1 An Example of Bug Report and Search Queries 23

3.2 Bench4BL Dataset Summary 32

3.3 Refined and Expanded Dataset 34

3.4 Train, Validation and Test-sets 35

3.5 Cross-Encoder Dataset (Random Split) 37

3.6 Cross-Encoder Dataset (Time-wise Split) 37

3.7 Performance of IQLoc . 41

3.8 Impact of the Selection of Top-K Results from Elasticsearch . . 41

3.9 Performance of IQLoc for Different Classes of Bug Reports . . 43

3.10 Comparison between IQLoc and Baseline Techniques in Bug Lo-
calization . 52

3.11 Statistical Test: IQLoc vs. Baselines 55

4.1 An Example of Bug Report and Search Techniques 67

4.2 Prompt Template for Relevance Feedback 71

4.3 Dataset . 74

4.4 Performance of BRaIn . 77

4.5 Performance of BRaIn against multi-document bugs 78

4.6 Impact of Query Expansion and Scoring 80

4.7 Comparison Between BRaIn and Baseline Techniques 81

4.8 Statistical Test: BRaIn vs. Blizzard 85

vi

List of Figures

2.1 Vector Space Model . 9

2.2 Cross-Encoder’s Architecture 17

3.1 Buggy Code and Method Context 23

3.2 Fine-tuning and Prediction of Cross-Encoder Model 24

3.3 Schematic Diagram of IQLoc: (A) Indexing & Retrieval of Doc-
uments, (B) Check Relevancy, (C) Query Reformulation, (D)
Bug-Localization . 26

3.4 An Example Bug Report from JIRA 33

3.5 GitHub Issue Selection . 34

3.6 Classification of Bug Reports 34

3.7 Distribution of Bug Reports in Different Dataset-Splits 36

3.8 Impact of Query Reduction on Retrieval Performance 44

3.9 IQLoc’s Performance for Different Types of Bug Reports . . . 45

3.10 Impact of Query Length on Bug Localization 45

3.11 Choice of Pre-trained Models for Query Reformulation 46

3.12 Choice of Pre-trained, Domain-Specific Embedding Model for
Query Reformulation . 47

3.13 Cross-Encoder’s Performance at Different Relevance Thresholds 48

3.14 Comparison of Baseline Techniques in Localizing Different Types
of Bugs . 53

3.15 Performance of Different Techniques on Different Subject Systems 54

4.1 Buggy Code with Diff . 67

4.2 Schematic Diagram of BRaIn: (A) Document Indexing & Re-
trieval, (B) Intelligent Relevance Feedback, (C) Query Expan-
sion, and (D) Bug Localization 68

4.3 Performance of BRaIn with Low Quality Bug Reports 79

vii

4.4 Rank Improvement: BRaIn vs Blizzard 84

viii

Abstract

Despite decades of research, locating software bugs remains a challenging task, as

suggested by recent surveys. Practitioners spend nearly 50% of their time dealing

with software bugs and failures. Many existing techniques use traditional methods

such as Information Retrieval (IR) to localize software bugs by leveraging textual

and semantic features from bug reports and source code. However, these techniques

often fail to bridge critical gaps between bug reports and source code, which require

an in-depth, comprehensive understanding of software bugs. In other words, these

techniques struggle when the localization of a bug requires going beyond simple tex-

tual or semantic matching. To address these gaps in the literature, we conduct two

independent but complementary studies that attempt to enhance IR-based bug lo-

calization by leveraging the reasoning capabilities of Large Language Models (LLM).

In our first study, we fine-tune a pre-trained language model (e.g., CodeBERT) using

buggy and bug-free source code and leverage its reasoning capability to enhance IR-

based bug localization. Unlike existing works, we incorporate our model’s reasoning

about a bug into query construction and document reranking during bug localiza-

tion. Our evaluation using three performance metrics and ≈7.5K bug reports shows

that our technique achieves improvements of 60.49% in MAP, 64.58% in MRR, and

100.90% in HIT@K compared to baseline methods. In our second study, we advance

IR-based bug localization by leveraging expert-like feedback from LLMs to enhance

search queries. In particular, we capture Intelligent Relevance Feedback (IRF) from

LLMs (e.g., Mistral) against each query and leverage it to reformulate the query and

thus improve the result ranks. Our experiments using ≈4.7K bug reports and three

performance metrics show that our technique improves bug localization by 87.6% in

MAP, 89.5% in MRR, and 48.8% in HIT@K against the baseline techniques. Fur-

thermore, it can localize ≈52% of bugs that the baseline techniques cannot localize

due to the poor quality of the corresponding bug reports. Given the above evidence,

our work has strong potential to advance IR-based bug localization leveraging the

reasoning capabilities of LLMs.

ix

List of Abbreviations

AI Artificial Intelligence

AST Abstract Syntax Tree

BLEU Bi-Lingual Evaluation of Understudy

BPE Byte-Pair Encoding

BPTT Backpropagation Through Time

CE Cross Encoder

CFG Control Flow Graph

CNN Convolutional Neural Network

DFG Data Flow Graph

DL Deep Learning

EB Expected Behavior

Es Elasticsearch

FN False Negative

FP False Positive

FPR False-Positive Rate

GRU Gated Recurrent Unit

HF Hugging Face

IR Information Retrieval

IRBL Information Retrieval based Bug Localization

IRF Intelligent Relevance Feedback

ITS Issue Tracking System

LLM Large Language Model

LM Language Model

LSTM Long Short-term Memory

ML Machine Learning

NLM Neural Language Modeling

NL Natural Language

NLP Natural Language Processing

x

NMT Neural Machine Translation

OB Observed Behavior

PDG Program Dependency Graph

PE Program Elements

PR Pull Request

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RPE Relative Positional Embedding

ST Stack Trace

S2R Steps to Reproduce

T5 Text-To-Text Transfer Transformer

TN True Negative

TNR True-Negative Rate

TP True Positive

TPR True-Positive Rate

xi

Acknowledgements

First, I thank the Almighty, the most gracious and the most merciful, who granted

me the capability to carry out this work. Then I would like to express my heartiest

gratitude to my supervisor, Dr. Masud Rahman, for his constant guidance, advice,

encouragement, and extraordinary patience during this research. Without his con-

stant support, this work would have been impossible.

I would also like to express my sincere gratitude to Dr. Evangelos E. Milios,

Dr. Tushar Sharma and Dr. Ga Wu for their invaluable advisement and meticulous

evaluation of my RAD report. Their scholarly perspectives and thoughtful input have

elevated the quality and rigor of my research, and I am truly appreciative of their

time and expertise.

Thanks to all of the members of the Intelligent Automation in Software EngineeR-

ing (RAISE) Lab, with whom I have had the opportunity to grow as a researcher. In

particular, I would like to thank Sigma Jahan, Mehil Shah, Usmi Mukherjee, and Ri-

asat Mahbub, as well as past members of the lab— Parvez Mahbub and Ohiduzzaman

Shuvo.

I am grateful to Dalhousie University and its Computer Science Department for

their generous financial support through scholarships, awards, and bursaries that

helped me to concentrate more deeply on my thesis work. In particular, I would like

to thank Dr. Michael McAllister, Megan Baker and Vidhya Ramamoorthy.

I would like to express my deepest gratitude to my parents, my sister, and my

better half, Jannat, for their unwavering support and love throughout my academic

journey. Their constant encouragement, wise guidance, and countless sacrifices have

been instrumental in shaping my path.

Lastly, I extend my heartfelt thanks to all those who have supported me in various

ways throughout this research endeavor. Your encouragement, advice, and assistance

have been invaluable, and I am deeply grateful for your presence in my life.

1

Chapter 1

Introduction

1.1 Motivation

Software bugs are flaws or errors in a software system that produce incorrect results

or unexpected behavior [77]. The impact of software bugs can be severe, leading to

substantial financial losses, data breaches, security vulnerabilities, and operational

disruptions [41,56]. In 2022 alone, software maintenance cost the U.S. economy $2.4

trillion, an increase of approximately 84% over the previous two years [4]. More

recently, a software bug in Microsoft-owned CrowdStrike’s systems caused several

hours of disruption in the U.S. airline industry, incurring over $10 billion in damages

[154, 170, 174]. Addressing such bugs requires considerable effort, with developers

spending 35-50% of their time on bug resolution [25, 115]. A recent survey by Zou

et al. [187] involving 327 software practitioners (e.g., developers, project managers,

testers) from major IT companies (e.g., Google, Meta, Microsoft, Amazon) suggests

that 82.4% of respondents considered bug finding (a.k.a., bug localization) as an

important or a highly important task.

Bug localization refers to a process of identifying the specific location (e.g., file,

module, or line of code) in a software system where a bug (error) might be present

[127, 136]. Software bugs are typically submitted to bug-tracking systems (e.g.,

Bugzilla, JIRA) as bug reports, which might capture crucial hints for their reso-

lution. Developers often rely on these reports to localize bugs in the code. Given the

challenges in localizing bugs, the existing literature has witnessed the emergence of

two major types of automated methods: Spectrum based fault localization (SBFL)

and Information Retrieval based bug localization (IRBL). Spectrum-based fault lo-

calization [94, 110, 162] employs test cases and captures the execution traces of a

software system for localizing software bugs or faults. By comparing the execution

traces between passing and failing tests, SFBL determines a program element’s like-

lihood of being faulty [94]. However, the execution traces are not always readily

1

2

accessible, making these methods less scalable [94]. On the other hand, Informa-

tion Retrieval (IR)-based methods rely on the keyword overlaps between bug reports

and source code to localize bugs [91, 94, 114, 163, 167]. Although IR-based methods

are lightweight and scalable, they may not always deliver satisfactory results due to

sporadic term matching between bug reports and source code.

1.2 Problem Statement

Although IR-based techniques for bug localization are lightweight, they suffer from

vocabulary mismatch problems [60]. They rely on textual similarity and often do not

consider the context and semantics of the source code when matching terms from

bug reports. Over the last few decades, many approaches have been proposed to

mitigate these issues. Researchers have incorporated historical data from past bug

reports, code change history, past bug fixes, and author history into bug localization

[164, 181]. Even though they provide additional contexts for a software bug, these

approaches primarily rely on statistical chances, which might not be always high. For

instance, many bugs might not have enough historical information to glean insights

from, which could limit their effectiveness in bug localization. A recent study [96] also

suggests that these approaches, despite their added contexts from historical data, do

not significantly outperform the previous approaches for bug localization.

Recent IR-based techniques for bug localization attempt to improve their queries

by capturing syntactic, co-occurrence, and hierarchical relationships among the words

in bug reports [30, 127, 129, 143]. However, these methods only use terms found in

bug reports, which could be poorly written or deficient [127]. As a result, they might

also fail to bridge the gap between natural language from bug reports and source

code from a project when locating software bugs. To address this issue, several

techniques attempt to enhance their queries with relevant terms captured from source

code documents through relevance feedback mechanisms [61, 68, 85, 98, 129, 161, 182].

However, the majority of these techniques naively consider the top few documents

(based on textual similarity) as relevant, overlooking the need for a comprehensive

understanding of the code. As a result, they may not always capture meaningful

terms from source code for their search queries. [30,85]. Thus, the existing IR-based

techniques for bug localization suffer from two major challenges as follows.

3

(a) Textual and semantic similarity might not be sufficient: Bug reports

contain not only natural language texts but also technical jargons, commit diffs,

stack traces, and program elements [129]. Although these structured artifacts hold

important clues and symptoms of encountered bugs, the majority of bug reports still

contain natural language texts [30]. Since natural language is loosely structured, it

can introduce ambiguity by expressing the same idea in various ways [60]. On the

other hand, programming languages are more structured but still allow syntactically

diverse expressions (e.g., iterative vs. functional approaches) and arbitrary naming

conventions [14, 43, 144]. Such variability in text or code can result in textual mis-

matches, where keywords or key phrases in the bug report (e.g., “download failed”)

do not directly match the identifiers in the code (e.g., fetchResource). At the same

time, semantic mismatches can arise when a problem discussed in the bug report does

not correspond to the programming task implemented in the code. For example, the

reported problem – “download failed” – might not align well with the programming

task – “HTTP/FTP operation task and get packets” if the word-level semantics are

considered only. It requires an understanding of the relationship between network

operations and file downloading to establish their connection. In other words, to

localize such bugs, automated tools or methods need to go beyond surface-level sim-

ilarity and comprehensively understand the context of an encountered problem as

well as the functionality of the corresponding source code. They might also need to

capitalize on the strengths of multiple types of methods to design a comprehensive

solution. To the best of our knowledge, existing work on bug localization overlooks

such aspects, indicating a major gap in the literature.

(b) Relevance feedback against search queries might not be always rel-

evant: Gay et al. [68] proposed a manual, iterative approach that leverages relevance

feedback from developers and constructs queries to search for buggy source docu-

ments. In contrast, Sisman et al. [144] and Kim et al. [85] select the top few source

documents as relevant (a.k.a. pseudo-relevance feedback) and leverage the feedback

to improve their search queries. However, these techniques rely heavily on textually

similar documents, which may not be always relevant, especially when bug reports

are used as queries. Thus, a deeper understanding of both bug reports and source

code is warranted to improve the relevance feedback mechanism and the subsequent

4

steps of Information Retrieval (e.g., query reformulation, retrieval).

1.3 Our Contribution

In this RAD report, we conduct two independent but complementary studies to fill

the above gaps. In these studies, we propose two novel techniques for bug localization

leveraging the reasoning capabilities of the Large Language Models (LLMs) as follows.

In our first study, we propose – IQLoc – a novel hybrid approach that capital-

izes on the strengths of both Information Retrieval (IR) and LLM-based program

understanding to support bug localization. The sole reliance on textual relevance

during bug localization could lead to a large search space. Our technique narrows

it down by incorporating a deeper understanding of program semantics [47, 73, 175]

into IR leveraging the transformer-based models. First, IQLoc retrieves the top K

source documents relevant to a bug report using a widely used IR-based approach

(e.g., BM25 algorithm [133]). Second, it constructs appropriate search queries and

retrieves relevant source documents leveraging the program semantics understanding

of transformer-based models (e.g., cross-encoders). Finally, our technique reranks the

retrieved source documents based on their overall relevance and perceived semantics

by the LLM.

We refined and extended an existing benchmark dataset – Bench4BL [96] – for

our experiments. To refine the dataset, we selected the bug reports that include

version information and have corresponding relevant documents in their respective

GitHub repositories. We also expanded it by incorporating ≈30% recent bug re-

ports submitted between 2018 and 2024, resulting in a final set of 7,483 bug re-

ports. To evaluate our proposed technique, we employed three appropriate and widely

used metrics: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and

HIT@K. We compare our technique with four appropriate baselines from the litera-

ture – BLUiR [136], Blizzard [129], DNNLoc [92] and RLocator [29]. Across various

measures, IQLoc consistently outperformed these techniques, with improvements of

up to 58.52% and 60.59% in MAP, 61.49% and 64.58% in MRR, and 69.88% and

100.90% in HIT@K for the test bug reports with random and time-wise splits, re-

spectively. Furthermore, IQLoc improves MAP by 91.67% for bug reports with stack

5

traces, 72.73% for those with code elements, and 65.38% for those with natural lan-

guage texts only. These results underscore the benefits and technical superiority of

our proposed approach.

While our first technique effectively integrates IR and transformer-based language

models for bug localization, it struggles to detect bugs for natural language-only bug

reports. In our second study, we propose – BRaIn – a novel transformer-based tech-

nique that captures expert-like feedback from Large Language Models (LLMs) for a

given query (i.e., bug report) to enhance bug localization. Unlike existing approaches,

BRaIn leverages Intelligent Relevance Feedback (IRF) from LLMs to refine its queries

and rerank the source documents using a feedback-driven scoring mechanism. First,

BRaIn identifies potentially buggy documents from a codebase by analyzing their

contextual relevance (i.e., IRF) to a reported bug using transformer models (e.g.,

Mistral [151]). Second, it then extracts appropriate terms from these documents and

further expands the original query. Finally, BRaIn reranks the documents by execut-

ing the expanded query and applying the relevance feedback, providing a refined list

of suspicious source documents.

We used the curated dataset, Bench4BL [96], for our experiments. Since our focus

was on capturing relevance feedback, we target the bug reports containing only natu-

ral language texts without any program artifacts (e.g., stack traces), which left us with

4,683 bug reports. We evaluated the performance of our approach using three com-

monly used metrics: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR),

and HIT@K. Our approach is compared with six suitable baselines from the literature

– BLUiR [136], Blizzard [129], Sysman-SCP [68], DNNLOC [92], NextBug [180] and

RLocator [29]. BRaIn consistently outperformed these existing techniques, showing

19.3% and 87.6% higher MAP scores than that of traditional and Machine Learning

(ML)-based approaches, respectively. Similar gains were observed in MRR (17.5%

and 89.5%) and HIT@10 (12.2% and 48.8%). Additionally, we evaluated BRaIn’s

ability to localize bugs affecting multiple documents and observed improvements of

7.0-10.6% in MAP, 7.9-10.6% in MRR, and 6-6.9% in HIT@10. BRaIn is also capable

of addressing poor-quality bug reports and successfully localizing ≈52% of bugs that

baseline techniques cannot handle. All these results demonstrate the effectiveness

and superiority of our proposed technique in software bug localization.

6

1.4 Related Publications

Several parts of this work have been accepted at and submitted to different conferences

and journals. We provide a list of related publications here. In each of these papers,

I am the primary author who conducted all the studies under the supervision of Dr.

Masud Rahman. While I wrote these papers, the co-author took part in ideation,

advising, editing, and reviewing the papers.

• Asif Mohammed Samir and Mohammad Masudur Rahman. Improved IR-based

Bug Localization with Intelligent Relevance Feedback. In Proceedings of the

International Conference on Program Comprehension (ICPC 2025), Ottawa,

Canada, 2025. (In Press)

Apart from the aforementioned paper, our another paper has been submitted to

a major software engineering journal.

• Asif Mohammed Samir and Mohammad Masudur Rahman. Improving IR-

Based Bug Localization through Program Semantics-Driven Intelligent Query

Reformulation. Journal of Systems and Software (JSS), 2025.

1.5 Outline of the Report

The document contains five chapters in total. To localize bug effectively and effi-

ciently, we conduct two independent but complementary studies, and this section

outlines different chapters as follows.

• Chapter 1 motivates the research problems, outlines our research contributions,

and discusses related publications.

• Chapter 2 discusses several background concepts (e.g., bug localization, embed-

dings, cross-encoder) that will be required to follow the rest of the document.

• Chapter 3 introduces IQLoc, a novel hybrid technique that capitalizes on the

strengths of both Information Retrieval and LLM-based code understanding to

improve bug localization.

7

• Chapter 4 presents BRaIn, that advances bug localization by leveraging Intel-

ligent Relevance Feedback (IRF).

• Chapter 5 concludes the RAD report with a list of directions for future works.

Chapter 2

Background

In this chapter, we introduce the required terminologies and concepts to follow the rest

of the report. Section 2.1 provides an overview of the program semantics. Section 2.2

and Section 2.3 introduce basic, widely used concepts such as Information Retrieval

and Embeddings. Section 2.4 covers sequence modeling with RNN, LSTM, GRU,

attention mechanisms, and transformers, which are popular neural architectures for

handling sequential data. Section 2.5 explains Neural Language Modeling (NLM), a

deep learning approach for learning the probability distribution of a textual corpus.

Section 2.6 presents Cross-Encoders, a lightweight Transformer-based model used for

document reranking. Finally, Section 2.7 provides a summary of the chapter.

2.1 Program Semantics and Context

Program semantics refer to the meaning or behavior of a computer program, explain-

ing how it processes inputs, performs computations, and produces outputs [73]. They

provide a structured way to reason about a program’s functionality, correctness, and

execution behavior [47]. However, program semantics cannot be fully understood in

isolation — they require context. Variables, functions, and control flows must be

interpreted by capturing their surrounding program elements. Existing literature [49]

suggests that context is not a static property but rather something that emerges

dynamically from the interaction and relationships among program elements. To

localize software bugs, we need to analyze not only the source code but also its se-

mantics within its context. In particular, we leverage the Large Language Models’

ability to understand program semantics in localizing software bugs.

8

9

Figure 2.1: Vector Space Model

2.2 Information Retrieval

Information Retrieval (IR) [103] is a technique for retrieving relevant documents from

a large collection of documents based on user queries. We discuss several key concepts

related to IR as follows.

2.2.1 Vector Space Model (VSM)

The Vector Space Model (VSM) [95] is a foundational concept in Information Re-

trieval and Natural Language Processing. It represents texts documents as vectors

in a continuous vector space (Fig. 2.1), enabling mathematical operations on those

vectors. The primary idea is to convert text documents into numerical vectors, where

each dimension corresponds to a unique term (usually words) from the entire corpus,

and the value in each dimension reflects the importance (e.g., frequency) of that term

in the document.

Formally, let a document and all unique terms in the corpus be denoted as D and

T respectively. The vector representation of the document D in a |T |-dimensional

space is given by:

D = (w1, w2, . . . , w|T |),

where wi represents the weight of a term in the document. The weights wi can be cal-

culated using several schemes, such as term frequency (TF), term frequency-inverse

document frequency (TF-IDF), or more advanced alternatives like word embeddings.

10

This vector representation facilitates many tasks, including document similarity com-

putation, clustering, and retrieval, by enabling mathematical operations in the vector

space.

2.2.2 Indexing

The first step of information retrieval is to construct an index of the documents from

a collection (a.k.a., corpus). It involves parsing the documents, extracting important

terms, and storing them in a data structure that allows for efficient retrieval. The most

widely used tools for indexing text documents are Lucene [57] and Elasticsearch [6].

They create an inverted index against a corpus [103], which maps terms to their

documents and thus optimizes search performance.

To build an efficient index, each document is preprocessed by splitting its con-

tent into individual tokens and removing stop words or punctuation marks. Stop

words add only little value to the semantics of a document [103, 163]. Stemming or

lemmatization is often applied to reduce words to their base forms, ensuring that

the variations of a word are treated as identical. All these preprocessing steps can

enhance the effectiveness of the index, making searches faster and more accurate. In

both of our studies, we used Elasticsearch to index source code, leveraging its ability

to handle a large collection of documents.

2.2.3 Document Retrieval

When a user submits a query, the IR-system processes it to understand the infor-

mation need. This may involve tokenization, stemming, and removal of stop words.

The system then matches the processed query against the index to detect relevant

documents.

In traditional Vector Space Models (VSM), documents and queries are represented

as vectors in a multi-dimensional space, where each dimension corresponds to a unique

term in the corpus. To determine relevance, the terms in the documents are often

weighted using a scheme like TF-IDF [97], which helps capture the importance of

each term. The relevance between the query and the document is then determined by

computing the similarity (e.g., cosine similarity) between their corresponding vectors.

This approach allows the system to rank documents by how similar they are to the

11

query, with higher scores showing greater relevance.

Modern IR systems like Elasticsearch [6] typically do not use cosine similarity

ranking, given their limitations (e.g., bias towards large documents) [103, 132]. In-

stead, they rely on more advanced scoring models such as BM25 [133]. We discuss

several concepts related document retrieval as follows.

• TF-IDF: Term Frequency-Inverse Document Frequency (TF-IDF) is a statis-

tical measure to determine the importance of a term in a document. The Term

Frequency (TF) measures how often a term appears in a document relative to

all the appearances of terms in the document. It is calculated as follows-

TF (t, d) =
ft,d∑

t′∈d ft′,d

Here, ft,d represents the count of term t in document d. The denominator,∑
t′∈d ft′,d, sums up all the occurrences of terms in the document d. A higher

TF value indicates that the term appears frequently in the document, making

it more significant for the document.

The Inverse Document Frequency (IDF) measures how important a term

is within the corpus. It is calculated as follows-

IDF (t,D) = log
|D|

|{d ∈ D : t ∈ d}|

Where, |D| is the total number of documents, and |{d ∈ D : t ∈ d}| counts

the documents containing term t. If a term appears in many documents, its

IDF value is low, indicating it is common and less informative. Conversely, rare

terms have higher IDF values, emphasizing their uniqueness and relevance.

The TF-IDF score is obtained by multiplying TF and IDF:

TF-IDF(t, d) = TF(t, d)× IDF(t)

Thus, the TF-IDF score assigns greater importance to terms that are

frequent in a document but rare across the entire corpus, making them reliable

representatives of document content.

12

• BM25: BM25 is a probabilistic retrieval model that ranks documents according

to their relevance to a query. Unlike cosine-based ranking, it can address the

challenge of large documents. The BM25 score is calculated as follows:

BM25(d, q) =
∑
t∈q

IDF(t) · TF(t, d) · (k1 + 1)

TF(t, d) + k1 · (1− b + b · |d|
avgdl

)

where k1 and b are parameters, |d| is the length of document d, and avgdl is

the average document length in the corpus. The parameter k1 controls term

frequency saturation, limiting the impact of repeated terms. The equation

(1− b+ b · |d|
avgdl

) scales term frequency based on document length |d| relative to

avgdl, preventing longer documents from being unfairly favored.

In both of our studies, we use Elasticsearch with its default scoring model– BM25

to retrieve potentially buggy source documents against bug reports (a.k.a., queries)

with default k1 = 1.2 and b = 0.75 values.

2.3 Word Embedding

Embedding [15] is a mathematical representation of discrete objects in a continuous

vector space. This representation allows capturing semantic relationships and sim-

ilarities between the objects. Formally, an embedding can be defined as a function

f : X → Rd, where X is a set of discrete objects (e.g., words, sentences) and Rd

is a d-dimensional real-valued vector space. The goal of this mapping is to position

similar objects close to each other in the embedding space, thereby preserving their

semantic relationships.

Word embedding [108] is a distributed representation of words in a vector space,

where semantically similar words are positioned close to each other. This represen-

tation captures both syntactic and semantic relationships between words, enabling

various natural language processing tasks. A word embedding model learns a mapping

wi for each word w ∈ V , where V is the vocabulary. Words with similar meanings will

have vectors that are close together in the embedding space. To find how close two

words are, the cosine similarity between two word vectors vi and vj can be computed

as:

13

cosine-similarity(vi,vj) =
vi · vj

∥vi∥∥vj∥

where · denotes the dot product and ∥v∥ represents the Euclidean norm of each

vector. This similarity measure indicates the semantic proximity between two words

in the embedding space.

Traditional techniques like Word2Vec [107] and GLoVE [119] use large text cor-

pora to learn these embeddings, leveraging the distributional hypothesis [72]. Simi-

larly, more advanced techniques like BERT [45] capture word semantics by leveraging

the self-attention mechanism. Such embeddings enhance the performance of various

downstream applications in NLP (e.g., information retrieval). In our first study, we

employ an algorithm to reformulate queries from bug reports based on CodeT5 [168]

embeddings for bug localization.

2.4 Sequence Modeling

Many real-world tasks (e.g., text completion, summarization) require the analysis of

sequential data, where the order of information matters. Traditional feed-forward

neural networks often fall short in handling sequential data since they lack memory

mechanisms. To overcome such a challenge, several sequence modeling techniques

have been introduced over the years. In this section, we will discuss several of them

in detail.

2.4.1 Recurrent Neural Network

Recurrent Neural Networks (RNNs) [63,150] are a type of neural network designed to

handle sequential data. Unlike traditional feed-forward networks, RNNs can capture

patterns over time, making them useful for tasks that require sequence modeling.

These networks are based on the idea of a dynamic system that can capture neu-

ron interactions [134, 173] and maintain an internal memory to process sequences

effectively [150].

An RNN model processes an input sequence by targeting one element from the se-

quence at a time and maintains an internal state (or memory) that retains information

about the history of the sequence. The model’s output at each step is dependent not

14

only on the current input of the sequence but also on the previous state, enabling the

network to exhibit temporal dynamic behavior. The network is a recursive structure,

where the output at the current time step is a function of the state at the previous

time step and the current input. The technique of unrolling or unfolding an RNN for

a finite number of steps reveals how the state signal at any given point incorporates

contributions from all preceding inputs and states within the unrolled window.

RNNs are particularly valuable for text-based tasks because language follows a

sequential structure, where the meaning of a word often depends on its context [63].

Their ability to maintain memory over time makes them well-suited for natural lan-

guage processing (NLP) applications such as language modeling, machine translation,

and speech-to-text transcription [142].

RNNs provide a way to model sequential data, but they struggle with vanishing

and exploding gradients [118]. [118]. These challenges arise during training using

”Back Propagation Through Time” (BPTT) [63], which is an adaptation of the back-

propagation algorithm for sequential data. When training on long sequences, the

gradients of the loss function with respect to the parameters associated with earlier

time steps can become either exponentially small (a.k.a., vanishing gradients), hin-

dering the network’s ability to learn long-range dependencies, or exponentially large

(a.k.a., exploding gradients), leading to unstable training. To address such challenges,

subsequent networks (e.g., LSTM) have been proposed.

2.4.2 Long Short-term Memory and Gated Recurrent Unit Models

Long Short-Term Memory (LSTM) [35, 157] networks and Gated Recurrent Units

(GRU) [36] are advanced architectures designed to address the limitations of tradi-

tional Recurrent Neural Networks (RNNs), particularly the vanishing and exploding

gradient problems that hinder the learning of long-term dependencies.

LSTMs [157] address the above challenge by using a more complex structure that

includes memory cells and three types of gates: the input gate, the forget gate, and

the output gate. These gates work together to control what information is added to

memory, what is discarded, and what is passed on to the next layer. This mecha-

nism helps LSTMs retain important information over long periods while filtering out

irrelevant data, effectively addressing the problem of vanishing gradients.

15

GRUs [36] simplify the above process by combining the input and forget gates into

a single update gate and introducing a reset gate. This streamlined approach reduces

the model’s complexity while still allowing it to capture long-term dependencies ef-

fectively. As a result, GRUs often train faster than LSTMs and perform comparably

in many tasks, making them a more efficient option in certain scenarios.

Despite their advantages, both LSTMs and GRUs are not without challenges.

They can be computationally intensive, requiring significant resources for training,

especially on large datasets. Additionally, while they are better at handling long-term

dependencies than traditional RNNs, they can still struggle with very long sequences

or when the relevant information is far back in the input history.

2.4.3 Attention Mechanism

The attention mechanism [23, 158] overcomes key limitations of LSTM and GRU

models, particularly in handling long sequences and dependencies. Although LSTMs

and GRUs are designed to retain information across multiple time steps, they often

struggle with very long-term dependencies, as information can become diluted or lost.

Moreover, their sequential nature restricts parallel computation, increasing training

time and reducing efficiency. The attention mechanism addresses these issues by

enabling the model to focus dynamically on relevant inputs and facilitating parallel

processing during attention score calculation. By leveraging query, key, and value vec-

tors, the mechanism computes attention scores that capture dependencies across the

entire input sequence. Its comprehensive contextual representation allows the model

to maintain and utilize relevant information for the current output, thereby enhancing

its ability to process long and complex sequences. The attention mechanism has differ-

ent variants [23] to address specific challenges in sequence modeling. One key variant

is self-attention, which allows a model to weigh the importance of different elements

within a single input sequence. This allows it to capture intra-sequence relationships

between words or tokens important for contextual understanding. Multi-head atten-

tion extends self-attention by using multiple independent attention heads in parallel,

enabling the model to capture diverse relationships and features more efficiently. This

parallelism improves performance by employing a model’s ability to focus on different

aspects of an input sequence simultaneously. In contrast, cross-attention computes

16

attention between two different input sequences, using queries from one sequence and

keys and values from another. This method is particularly useful in tasks where in-

teractions between different modalities or sequences (e.g., machine translation) play

a critical role. In our studies, we take advantage of the self-attention mechanism to

determine the contextual relationship between bug reports and source documents.

2.4.4 Transformers

The Transformer model, introduced by Vaswani et al. [158] in 2017, represents a sig-

nificant advancement in deep learning, particularly for natural language processing

(NLP) tasks. Unlike traditional sequential models (e.g., RNN, LSTM, GRU), the

Transformer employs a self-attention mechanism that processes all elements of an

input sequence simultaneously. Self-attention computes the relevance of each token

in the sequence to every other token, enabling the model to dynamically focus on

the most important parts of the input for a given context. This mechanism enhances

the model’s ability to capture long-range dependencies and understand contextual

relationships within the data. The Transformer architecture consists of an encoder-

decoder structure, where the encoder transforms the input sequence into a continuous

representation, and the decoder generates the output sequence based on this repre-

sentation. Each encoder and decoder layer incorporates multi-head attention— a

more advanced form of self-attention—and feed-forward networks, facilitating rich

interactions between different parts of the input. Positional encodings further allow

the model to retain information about the order of tokens in the sequence, which

is critical for understanding context. Our work employs Transformer models, and

leverage their strengths and contextual understanding.

2.5 Natural Language Modeling

Language modeling (LM) [105], a cornerstone of natural language processing (NLP),

has evolved significantly from its early stage. Initially, statistical language models

(SLMs) focused on predicting the next word in a sequence using fixed context lengths

and probabilistic techniques (e.g., Hidden Markov Model) [105]. While effective for

basic tasks (e.g., Part-of-Speech tagging), these models faced challenges due to high-

dimensional data, limiting their ability to model complex patterns in language. The

17

Figure 2.2: Cross-Encoder’s Architecture

advent of neural language models (NLMs) [19] addressed these limitations by leverag-

ing deep learning and distributed word representations, enabling machines to capture

richer, more nuanced linguistic relationships.

The NLP field advanced further with the introduction of pre-trained language

models like BERT [45] and GPT [124], which learn contextual representations from

vast datasets. The NLP field advanced further with the introduction of pre-trained

language models like BERT [45] and GPT [124], which learn contextual represen-

tations from vast datasets. As models grew in size and complexity, they started

to exhibit special abilities (e.g., in-context learning) that are not observed in small

scale models [184]. These abilities not only enhance traditional tasks (e.g., text clas-

sification and translation) but also in more complex reasoning and problem-solving

scenarios [184]. They also allow models to tackle challenges across diverse domains,

such as programming assistance and data analysis. Both of our works leverage the

capability of language models (e.g., CodeBERT, Mistral) to improve bug localization.

2.6 Cross-Encoders

The cross-encoder [75] is a transformer-based approach used for reranking documents

by enabling deep interactions between the input context and the candidate. This

approach processes the context and the candidate jointly within a single transformer

model. The inputs are concatenated with a special separator token (e.g., [SEP])

18

and passed through the transformer, allowing self-attention to capture fine-grained

dependencies between them (Fig. 2.2).

Given an input context ctxt and a candidate cand, the transformer T produces a

joint representation, typically extracted from the first token of the output sequence:

yctxt,cand = h1 = first(T (ctxt, cand))

During encoding, the candidate label can focus on specific features within the

input context, enabling the model to identify the most relevant input features for each

candidate. This property makes the cross-encoder particularly effective for reranking

tasks where fine-grained relevance is warranted.

Prior studies [44, 117] have demonstrated the cross-encoder’s advantages in refin-

ing retrieved results by analyzing relationships between queries and documents. We

used a cross-encoder in our first study, IQLoc, to rerank source documents based on

program semantic relevance between source code and bug reports.

2.7 Summary

In this chapter, we introduced key terminologies and background concepts essential for

following the remainder of this report. We began with an overview of program seman-

tics. Then we discuss Information Retrieval (IR) in the context of textual retrieval,

followed by a discussion on word embeddings, which numerically represent textual

data. We then explored RNNs, LSTMs, GRUs, and Transformers, the widely used

architectures for processing sequential data. Next, we traced the evolution of Neu-

ral Language Modeling, highlighting its progression toward modern Large Language

Models (LLMs). Finally, we introduced the cross-encoder, a document reranking

method based on Transformer architecture.

Chapter 3

Improving IR-based Bug Localization with Semantics-Driven

Query Reduction

Software practitioners consider bug resolution as one of the major challenges, consum-

ing up to 50% of development time and accounting for 40% of maintenance costs. In

this chapter, we introduce a novel bug localization technique – IQLoc – that capital-

izes on the strengths of Information Retrieval and LLM-based program understanding

to localize software bugs. Previous approaches rely primarily on statistical chances

rather than a comprehensive understanding of the program’s semantics, limiting their

effectiveness in bug localization. In this chapter, we address this gap by introducing

an approach that leverages program semantics to improve bug localization.

The rest of this chapter is organized as follows: Section 3.1 introduces IQLoc and

highlights the novelty of our contribution. Section 3.2 presents a motivating exam-

ple to illustrate the usefulness of our approach. Section 3.3 describes our proposed

approach for localizing bugs. Section 3.4 discusses our experimental design including

dataset construction, evaluation metrics, and results. Section 3.5 discusses related

studies in the field of bug localization. Section 3.6 identifies potential threats to the

validity of our work. Finally, Section 3.7 summarizes this study.

3.1 Introduction

Software maintenance claimed $2.4 trillion in 2022 from the US economy, a ≈84% in-

crease over the previous two years [4]. A significant factor contributing to this increase

in costs is software bug, which prevents a software system from working correctly [77].

These bugs not only hinder the functionality of software but also can lead to severe

system failures (e.g., AT&T Mobility outage) [8,52,120,140]. Consequently, software

developers dedicate 35-50% of their time tackling these bugs [25,115]. Zou et al. [187]

recently conduct a practitioner survey where they select ten different tasks related to

software bugs and collect responses from 327 software practitioners (e.g., developers,

19

20

project managers, testers) affiliated with leading IT companies (e.g., Google, Meta,

Microsoft, Amazon). According to their survey, 82.4% of the practitioners consider

bug localization as the most important or an important task. The task involves iden-

tifying the specific locations in the software code responsible for a software bug or

failure.

During bug localization, developers often rely on bug reports to find the loca-

tions of problematic code. However, understanding bugs from their description in the

reports and locating them in the software code is challenging and time-consuming,

even for seasoned developers [127]. Bug reports contain natural language text and

program artifacts such as stack traces, program elements, and code diffs [129]. The

presence of these diverse contents in bug reports and the inherent ambiguities in nat-

ural language text [60] can significantly complicate the process of bug localization. To

address these challenges, researchers have been actively pursuing automated solutions

for bug localization over the last 50 years [84,92,94,114,121,136,163,164].

Over the last few decades, many methods have been employed to automatically

localize software bugs. One frequently used method is Information Retrieval (IR).

Existing IR-based approaches [94, 114, 121, 163] often use pre-processed texts from

bug reports as search queries and attempt to match them with source code, overlook-

ing the context or semantics of the code. This can lead to spurious matching between

bug reports and source code, given the variability of natural language text describ-

ing the software bug [31, 60]. Several existing approaches incorporate code change

history, version control history, or even code authoring history to improve bug local-

ization [164,181]. Although additional contexts of a software bug are captured, these

approaches rely primarily on statistical chances rather than a comprehensive under-

standing of the program semantics, limiting their effectiveness in bug localization.

A recent work [96] shows that these techniques perform comparably despite incor-

porating additional contextual information. Furthermore, another recent work [127]

suggests that the performance of existing IR-based techniques might be significantly

affected by their selected queries from the bug reports.

Recently, several approaches have focused on making appropriate search queries

based on bug reports to improve bug localization. Rahman and Roy [126] leverage

both co-occurrences and syntactic dependencies among words from a bug report to

21

capture meaningful search queries. In a recent work [129], the authors also show

the use of static and hierarchical dependencies among program elements to construct

queries. Other techniques [30, 143] make queries from a bug report through key-

word expansion or noise removal. Although effective in making queries, these tech-

niques could be limited by the vocabularies of bug reports, which are of varying

quality [127]. This limitation restricts their capacity to comprehend contextual intri-

cacies and locate defective source code documents. In contrast, deep learning-based

techniques show promise in understanding the conceptual relationship between code

and text [26,177,185]. Being trained on corpora beyond bug reports, these techniques

can draw inferences from a larger knowledge base. However, they fail to leverage the

benefits that the existing methods (e.g., IR-based) have to offer during bug local-

ization. Moreover, they require extensive data and computational power, hindering

their large-scale, sustainable adoption.

To design a comprehensive solution capitalizing on the strengths of both ap-

proaches above, we propose IQLoc, a hybrid approach combining Information Re-

trieval (IR) with transformer-based models to localize software bugs. Textual rel-

evance alone may broaden a search space, potentially delivering unrelated results.

Our approach narrows down the search space by leveraging program semantics un-

derstanding of the pre-trained language models during bug localization. First, IQLoc

retrieves the top K source documents textually relevant to a bug report (a.k.a., query)

using an IR-based approach (e.g., the BM25 algorithm [133]). Second, it trains a

transformer-based, cross-encoder model to assess their relevance (based on their pro-

gram semantics) to the bug report and narrows down the search space. Finally, IQLoc

reduces the search query leveraging the above documents, reranks the documents us-

ing the query, and returns the suspicious source code documents.

We selected an existing benchmark dataset – Bench4BL [96] – for our experiments

and extended it with recent bug reports (i.e., submitted until September 2024). To

refine the dataset, we selected the bug reports that include version information and

have corresponding relevant documents in their respective GitHub repositories. We

further expanded it with ≈30% more recent bug reports, resulting in a final set of

7,483 bug reports. To evaluate our proposed technique, we employed three appro-

priate and widely used metrics: Mean Average Precision (MAP), Mean Reciprocal

22

Rank (MRR), and HIT@K. We compare our technique with four appropriate base-

lines from literature – BLUiR [136], Blizzard [129], DNNLoc [92] and RLocator [29].

Across various measures, IQLoc consistently outperformed these techniques, with im-

provements of up to 58.52% and 60.59% in MAP, 61.49% and 64.58% in MRR, and

69.88% and 100.90% in HIT@K for the test bug reports with random and time-wise

splits, respectively. Additionally, IQLoc improves bug localization over baselines in

terms of MAP and MRR, achieving 91.67% and 86.49% for bug reports with stack

traces, 72.73% and 66.67% for those containing program artifacts, and 65.38% and

64.29% for natural language-only bug reports.

Thus, this research makes the following contributions:

• A novel hybrid bug localization technique, IQLoc, that capitalizes on the strengths

of both traditional (e.g., query reformulation, IR) and deep learning-based ap-

proaches (e.g., transformer models) and leverages textual relevance, program

semantics relevance, and language models in bug localization.

• A refined and extended Bench4BL dataset incorporating recent bug reports,

resulting in ≈7.5K bug reports.

• A comprehensive evaluation of IQLoc using three popular metrics, two different

splits of the dataset, and comparison with four baseline techniques [29, 92,129,

136] from the literature.

• A replication bundle1 comprising a prototype, a carefully curated experimental

dataset, configuration details, and trained and pre-trained models for third-

party use and replication.

3.2 Motivational Example

In this section, we demonstrate the effectiveness of our approach –IQLoc– in bug

localization using a motivating example. We present an example where our approach

outperforms the baseline methods. Table 3.1 shows an example bug report from

Spring Workflow (SFW) and Fig. 3.1 shows the associated buggy code. When the

1https://github.com/asifsamir/IQLoc

23

Figure 3.1: Buggy Code and Method Context

Table 3.1: An Example of Bug Report and Search Queries

Bug ID # 1416 (Spring Webflow) Rank

Bug Title Turn off snapshot creation when max-snapshots=0 72
Bug Descrip-
tion

Creating snapshots involves serializing and compressing
the flow execution object, which can lead to issues with
some PersistenceContext providers. Having the ability to
turn off snapshot creation will provide an option when
such issues occur at the cost of losing back button support.

57

Baseline query Bug Title + Bug Description 53
IQLoc persistencecontext snapshot involves creation losing sup-

port flow object turn execution ability providers serializing
1

pre-processed version of the bug report is executed as a query by an IR-based search

engine (e.g., Elasticsearch), the first buggy document is found at the 53rd position,

which is not an ideal result. As shown in Table 3.1, the pre-processed version of the

title or description fields also does not make a good query.

The example bug report discusses an issue involving snapshot creation, which

could affect several classes including PersistentContext. Interestingly, the root

cause of the bug involves the serialization/compression of the FlowExecution ob-

ject. However, traditional techniques such as BLUiR and Blizzard consistently select

PersistenceContext as a query keyword since it is found in the bug report. This

leads to poor retrieval performance and they retrieve their first buggy documents

at the 13th and 18th positions, respectively. In contrast, the seminal work on deep

24

learning-based bug localization –DNNLoc– considers multiple features (e.g., textual

relevance, change history, collaborative filtering), but performs poorly by retrieving

the buggy document at the 28th position.

On the other hand, IQLoc attempts to understand the context of a reported

bug from the source code. In particular, its cross-encoder module learns to connect

bug reports to their corresponding buggy code through transformer-based, contextual

learning. The cross-encoder module of our technique was able to rank the buggy code

at the 11th position. Our module achieves that by capturing the context of the bug

from the bug report and making a connection with the intent of the buggy code (e.g.,

snapshot creation from FlowExecution). More interestingly, upon reformulating the

query (a.k.a., preprocessed bug report) leveraging the IR-based and cross-encoder-

based components, our technique delivers the buggy source document (e.g., Fig 3.1)

at the 1st position, which is ideal and highly promising.

(a) Fine-tuning

(b) Inference

Figure 3.2: Fine-tuning and Prediction of Cross-Encoder Model

25

3.3 Methodology

In this section, we present the methodology of our proposed technique –IQLoc– for

software bug localization. First, we describe the fine-tuning process of the Cross-

Encoder model, shown in Fig. 3.2, which assesses the relevance between bug reports

and source documents. Then, we explain how the fine-tuned model is integrated into

the overall workflow, as illustrated in Fig. 3.3.

3.3.1 Fine-tune Cross-Encoder Model

In IQLoc, we employ a cross-encoder model to determine relevance between a bug

report and a code segment (Step 3, Fig. 3.3). First, we fine-tune the base model of

CodeBERT, a transformer-based encoder model [54], using bug-fix changes and en-

able it to differentiate between buggy and non-buggy instances during inference (Fig.

3.2a). In particular, we append feed-forward network to the pre-trained CodeBERT

model to achieve classification. Due to its pre-training on a large amount of natural

language text and source code, the model is well-suited for our task involving bug

reports and source code.

To fine-tune the model, we first parse each source code document from the training

corpus and extract its buggy methods by leveraging the bug-fix diffs from correspond-

ing version control history (Step 1c, Fig. 3.2a). We detailed this method extraction

process in Section 3.4.1. We also establish connection between bug reports and cor-

responding buggy code using appropriate heuristics [96]. Then we treat bug reports

(Step 1a) and buggy code pairs (Step 1e) as positive samples in our training dataset.

These pairs are fed into the cross-encoder model for training with the goal of estab-

lishing positive contextual associations between buggy methods and their respective

bug reports (Step 2, Fig. 3.2a).

To train the model to differentiate between buggy and non-buggy samples, we

also add negative pairs where each pair consists of a bug report (Step 1a, Fig. 3.2a)

and a randomly selected method body (Step 1b-dashed) to distinguish buggy from

non-buggy code by leveraging program semantics. The capability stems from Code-

BERT’s pre-training on a large bimodal corpus, which equips it with rich semantic

representations of code structure and intent [54], as evidenced by its performance on

26

Figure 3.3: Schematic Diagram of IQLoc: (A) Indexing & Retrieval of Documents,
(B) Check Relevancy, (C) Query Reformulation, (D) Bug-Localization

downstream tasks (e.g., code summarization, clone detection [81, 101, 146]). Fine-

tuning further adapts these representations by reinforcing links between real-world

bug reports and their corresponding buggy code, enabling the model to capture subtle

semantic cues associated with buggy behavior.

3.3.2 Corpus Indexing

As we aim to localize software bugs using an Information Retrieval (IR)-based solu-

tion, it is essential to index all the source documents of a code base (a.k.a., corpus).

In our approach, we chose Elasticsearch [6] due to its efficient handling of diverse data

types, seamless integration with research tools, and robustness in document indexing.

Further details on corpus indexing can be found in Section 2. We index all source

code (Step 1, Fig. 3.3) from the 1,578 buggy versions of 42 subject-systems from the

Bench4BL dataset.

3.3.3 Retrieval of Potentially Buggy Source Documents

We use Elasticsearch to retrieve potentially buggy source documents by executing

queries selected from bug reports (Step 2, Fig. 3.3). Elasticsearch employs its default

Standard Analyzer to preprocess queries and retrieve the top-K results (e.g., K = 100)

from the corpus. During this retrieval process, we use the default scoring function

of Elasticsearch, Okapi BM25 [133], to assess the relevance of the search results.

When retrieving suspicious buggy documents, we specify the particular project and

version of the bug report where the bug occurred. Unlike other bug localization

techniques [84,129,136], which consider only the most recent version of a project and

27

may retrieve unrelated documents, our approach ensures that we localize bugs within

the correct historical context. This allows us to better mimic real-world scenarios

by retrieving documents from the appropriate project and version. At the end of

this step, we get a list of potential buggy source documents based on their textual

relevance to the bug report.

3.3.4 Relevance Estimation using Cross-Encoder

After obtaining results from Elasticsearch, we employ our fine-tuned cross-encoder

model to estimate their program semantic relevance to the bug report (Step 3, Fig.

3.3). Given that the cross-encoder model was trained to differentiate between buggy

and bug-free code (Fig. 3.2), its reasoning against the candidate methods should be

useful. While source code vocabulary is important, we thus also analyze code-level

contexts leveraging the cross-encoder to support bug localization.

We analyze each retrieved source code document by parsing its Abstract Syntax

Tree (AST) and extracting its individual methods (Step 1a-1b, 3.2b). Each method

is then paired with the bug report (Step 1c, 3.2b) and passed into the fine-tuned

cross-encoder model (Step 2, 3.2b), which generates generate a relevance score. This

score, ranging from 0 to 1, estimates the likelihood of a method being buggy. This

step refines the retrieved documents, enhancing the relevance between the bug report

and source code (Step 4, Fig. 3.3).

3.3.5 Query Reformulation

Although the above steps narrow down our search space, we further refine the rele-

vance estimation between bug reports and source code segments by reformulating our

search queries. In the following section, we discuss how we reformulate our queries

by leveraging the LLM’s reasoning capabilities as follows.

Pre-training of Large Language Models for Software Bugs

We extract salient keywords from a bug report and relevant code segments (Steps

5a, 5b, Fig. 3.3), using a Transformer-based model. By leveraging the self-attention

mechanism [158], Transformer models can focus on the most relevant parts of the

28

Algorithm 1 Extract Keywords

Require: Document Doc, number of top keywords N , trade-off parameter λ (0 ≤
λ ≤ 1)

1: procedure ExtractKeywords(Doc,N, λ)

2: D ← {} ▷ Initialize an empty dictionary

3: T ← Preprocess(Doc) ▷ Get tokens

4: for each t ∈ T do

5: E ← Embed(t)

6: D[t]← E ▷ Add embedding for a token

7: end for

8: B ← Embed(Doc) ▷ Compute document embedding

9: K ← ∅ ▷ Initialize selected keyword set

10: C ← D.keys() ▷ Candidate tokens

11: while |K| < N and C ̸= ∅ do
12: Scores← {}
13: for each t ∈ C \K do

14: sd ← CosineSimilarity(D[t], B) ▷ Similarity with document

15: if K ̸= ∅ then
16: sk ← max

k∈K
CosineSimilarity(D[t], D[k])

17: else

18: sk ← 0 ▷ No diversity penalty if no keywords selected

19: end if

20: MMR← λ · sd − (1− λ) · sk ▷ Compute MMR score

21: Scores[t]←MMR

22: end for

23: t∗ ← arg max
t∈C\K

Scores[t] ▷ Select token with highest MMR score

24: K ← K ∪ {t∗}
25: C ← C \ {t∗} ▷ Remove selected token from candidates

26: end while

27: return K ▷ Return top-N keywords

28: end procedure

29

text, understand the context, and represent the text comprehensively using high-

dimensional vectors. Their representations can be further adapted to different appli-

cation domains through pre-training using domain specific unstructured data [149].

To help capture salient keywords from bug reports and source code, we pre-trained

a transformer model, CodeT5, using bug reports with masking. The process of col-

lecting the pre-training dataset is explained in Section 3.4.1. We chose the CodeT5

model for embedding generation since it has been trained on both natural language

texts and source code, which is ideal for bug reports containing various elements

including text, code snippets, and program elements. Masked pre-training [45] in-

volves randomly masking a portion of the input tokens during training, encouraging

the model to learn contextual representations by predicting the masked tokens. Bug

reports contain valuable information about software issues, including descriptions of

bugs, code snippets, and stack traces, etc. By incorporating the masking technique to

learn from bug reports, we aimed to enhance CodeT5’s general understanding of the

domain-specific language, including its software engineering jargon and bug-related

linguistic nuances.

During the pre-training phase, we implemented a masking mechanism where 15%

of the tokens in each input sequence (i.e., bug reports) were randomly selected and

substituted with a special <extra id XX> token. This approach aligns with the orig-

inal T5 [125] model’s convention, where XX serves as a unique identifier assigned to

each masked token. The identifier follows a continuous numbering system, ensuring

that each masked token in the input sequence receives a distinct number in sequen-

tial order (e.g., <extra id 0>, <extra id 1>, <extra id 2>, and so forth). These

input sequences with the masked tokens are then fed into the model to predict the

original tokens based on contextual cues. By training the model to reconstruct the

original tokens from the masked input, it acquires the ability to capture the general

contextual understanding of bugs from bug reports.

Keywords from Bug Reports:

Keyword extraction involves selecting a subset of words or phrases that capture the

main theme of a text document, which can support various subsequent tasks (e.g.,

Information Retrieval [21]). For extracting keywords from bug reports, we employ

30

EmbedRank [20] due to its simplicity and compatibility with Transformer models

using the KeyBERT [66] library. The Algorithm 1 outlines the keyword extraction

process. We begin by pre-processing a bug report using standard text pre-processing

techniques, such as removing stop words and punctuation marks. Next, we employ

our pre-trained CodeT5 model to embed each token of the bug report. Similarly,

we apply the technique to embed the entire bug report. Then we calculate cosine

similarity [70] to measure the semantic proximity of each token to the bug report.

Based on these scores, we select the top-N most similar keywords (Step 5b, Fig. 3.3)

for the subsequent steps. To maximize diversity in the chosen keywords, we employ

the Maximal Marginal Relevance (MMR) [27] algorithm and set the MMR parameter

λ = 0.5, following the authors’ recommendation. Since the number of keywords affects

retrieval, we also determined the optimal value of N through a controlled experiment,

as discussed in RQ2.

Keywords from Code Segments:

We follow a similar approach to extract keywords from source code segments (Step 5a,

Fig. 3.3). However, instead of processing entire source documents, we consider only

the relevant code segments identified by the cross-encoder with a confidence score

above a predefined threshold (e.g., 0.5). If multiple code segments within a document

are deemed relevant, we concatenate them into a single code block before applying

Algorithm 1 for keyword extraction. We detail the selection of this threshold through

a controlled experiment in RQ3.

Reformulating the Query:

After extracting keywords from the bug report and relevant code segments, we lever-

age them to reformulate our queries and to enhance the retrieval (Step 6, Fig. 3.3).

We first measure the semantic similarity between the bug report keywords and the

code keywords using cosine similarity, leveraging embeddings from the CodeT5 model.

Our goal was to detect the top relevant documents and capture their overlapping to-

kens to enhance the keywords from the bug report. This reformulated query based

on such an enhancement is then used in the subsequent steps.

31

3.3.6 Bug Localization

Once we have the reformulated query, we rerank the top-K results (e.g., 100) initially

retrieved from the Elasticsearch (Step 7, Fig. 3.3). Similar to the initial retrieval, we

use the BM25 algorithm to rerank with the query constructed in the previous step.

As a result, it provides a more refined set of final results (Step 8 of Fig. 3.3) for bug

localization. Our goal was to place the buggy documents at the top positions within

the ranked list through the reranking. Then the developers will encounter the buggy

documents earlier and spend less time analyzing the false-positives.

3.4 Experiment

We evaluate our approach using the Bench4BL benchmark dataset and three appro-

priate performance metrics. We conduct our experiments on a cluster computing

system equipped with an NVIDIA GPU with 16 GB of vRAM and compare our

technique, IQLoc, against four baseline techniques from the literature. Using our

experiments, we attempt to answer four research questions as follows:

• RQ1: How does IQLoc perform in bug localization in terms of evaluation met-

rics?

• RQ2: (a) How does query length affect IQLoc’s performance in bug localiza-

tion? (b) What is the rationale for choosing the CodeT5 model for reformulating

query? (c) Does the use of pre-trained models enhance the performance of these

queries?

• RQ3: How does the cross-encoder model perform in identifying relevant buggy

source code based on program semantics?

• RQ4: (a) Can IQLoc outperform the existing baseline techniques in bug local-

ization? (b) How does it perform in localizing different types of bug reports

compared to the baseline techniques?

32

Table 3.2: Bench4BL Dataset Summary

Project Subject-systems Bug reports

Apache 13 4,503
Jbosss 8 1,505
Spring 25 3,451

Old Subject 5 558

Total 51 10,017

3.4.1 Dataset Construction

We use Bench4BL [96], a benchmark dataset, for our experiments. Table 3.2 summa-

rizes the Bench4BL dataset. Since the dataset is relatively old, we refine and extend

it with more recent bug reports. Table 3.3 shows our refined and expanded dataset.

In total, we spent over 80 hours refining and expanding the dataset. The following

sections detail our refinement process, the collection of new bug reports, and the

dataset’s split for training and testing in bug localization.

Refinement of Bench4BL Dataset:

The Bench4BL [96] dataset contains curated bug reports from various Java-based

community projects, including Apache, JBoss, and Spring. It captures 10,017 bug

reports from 51 subject systems along with their buggy/fixed versions of code and

other relevant metadata. Table 3.2 provides a summary of the benchmark dataset.

From our initial analysis of the benchmark dataset, we noticed that many projects

or bug reports lacked appropriate versioning information, making them unsuitable for

our experiment. We thus dropped the bug reports without any version details and

ensured that the remaining reports could be traced back to both buggy and bug-free

versions of the code. During this process, we encountered several challenges, including

cases where either the buggy or fixed version was missing in the code repository. We

discarded the bug reports with such discrepancies, ultimately retaining a dataset of

5,753 bug reports from the three large community projects (i.e., Apache, JBoss, and

Spring).

33

Figure 3.4: An Example Bug Report from JIRA

Expanding the Bench4BL Dataset:

After refining the original Bench4BL dataset, we expanded it by adding more recent

bug reports for our experiments. In particular, we collected bug reports that were

submitted by September 2024. Our expansion is limited to bug reports from the same

projects and subject systems as the original dataset. These systems are managed by

GitHub (e.g., Spring) and JIRA (e.g., JBoss, Apache). To collect new bug reports,

we employed two distinct approaches tailored to these issue-tracking systems.

To collect bug reports from JIRA-based issue tracking systems, we used the

JIRA API [40]. We also filtered issues that were of type a○ ‘Bug,’ had a status

of b○‘Resolved,’ a resolution of c○ ‘Fixed,’ and included both d○ a buggy version

and e○ a fixed version (Fig. 3.4). Additionally, we considered bug reports containing

explicit f○ Git pull request links to ensure a proper mapping between the buggy and

fixed versions, reducing false positives. Once we collected the bug reports from JIRA,

we used the GitHub API to extract the corresponding buggy and fixed files from the

linked pull requests. Since a pull request can contain multiple commits, we consid-

ered only accepted and verified commits. When multiple commits were associated

with a pull request, we included all files across these commits as a part of the fix for

that bug report. This approach accounts for bug fixes that evolve over time, often

involving multiple developers addressing different aspects of the same bug. Addition-

ally, it captures cases where bug reports were closed and later reopened for further

34

Figure 3.5: GitHub Issue Selection

fixes. By including all relevant files, we ensure a comprehensive representation of

the bug-fix process. Finally, we ensured that the versions specified in JIRA issues

(e.g., semantic version, 4.8.2) matched the version tags in GitHub (e.g., camel-4.8.2)

using regex-based validation, as the version strings in JIRA could differ from those

in GitHub.

Table 3.3: Refined and Expanded Dataset

Project Subject-systems Major versions Bug reports

Apache 11 428 3,145
Jbosss 6 303 1,416
Spring 25 847 2,922

Total 42 1,578 7,483

Figure 3.6: Classification of Bug Reports

On the other hand, when collecting bug reports from GitHub, we considered issues

that are a○ ’closed’ and labeled as b○ ’type: bug’ (Fig. 3.5). To determine the version

in which a bug was fixed and reduce false positives, we collected bug reports that

had explicit c○ milestones attached, indicating the version(s) in which the bug was

35

Table 3.4: Train, Validation and Test-sets

Split Type Training Validation Test Total

Random Split 5,238 748 1,497 7,483
Time-wise Split 5,236 746 1,501 7,483

resolved. Since GitHub issue reports do not explicitly define the buggy version, we

identified the immediate previous version tag associated with the first bug-fix commit

associated with the issue in the branch tree. While this may not always correspond to

the exact commit or version where the bug was introduced, it allows us to determine

the latest version in which the bug exists. After that, for resolving the buggy files,

we applied the same approach as used for JIRA bug reports.

Once we collected the bug reports and resolved the buggy files, we dropped the

bug reports related to configuration bugs (i.e., IML, XML). Following this procedure,

we complemented the original Bench4BL dataset with 1,730 recent bug reports. In

total we curated 7,485 bug reports from 42 subject-systems across 1,578 buggy/fixed

versions.

To gain further insight, we classify bug reports in our experimental dataset based

on their content, as was done by existing literature [129]:

• BRST (Bug Reports with Stack Traces): Includes stack traces along with text

or program elements. Queries from these reports are generally noisy.

• BRPE (Bug Reports with Program Elements): Contains program elements (e.g.,

method invocations, package names) but no stack traces. Queries from these

reports are considered rich.

• BRNL (Bug Reports with Natural Language Only): Lacks both program ele-

ments and stack traces. Queries from these reports are generally less informa-

tive.

To classify them, we use regular expressions adapted from the work of Rahman

et al. [129]. Fig. 3.6 shows the classification of our curated dataset.

36

(a) Random Split (b) Time-wise Split

Figure 3.7: Distribution of Bug Reports in Different Dataset-Splits

Train and Test Set:

For our experiments, we split the dataset into training, validation, and test sets

using a 70:10:20 ratio, following the standard machine learning practice for data

partitioning [64, 79]. In our dataset splitting, we adopted two strategies, as was

done by earlier studies [111, 145]. The first approach utilized random selection with

shuffling, where the dataset was randomly divided into training and test sets. To

ensure an unbiased random split, we conducted this process five times, generating five

randomly shuffled datasets to facilitate separate experiments. This process delivered

5,238 bug reports for training, 1,497 for testing and 748 for validation on random

trials in each of the five sets. The second strategy was a time-wise split. This type of

splitting divides data into training and test sets based on their chronological order,

simulating real-world scenarios where models are trained on past data and evaluated

on future instances. For each subject system, we sorted the bug reports by their

submission dates, split them individually into train, validation and test sets, and then

combined them with similar splits from other systems. This process resulted in 5,236

bug reports for training, 1,501 for testing and 746 bug reports for validation. Table

3.4 summarizes our curated dataset for the experiments. Also, Fig. 3.7 shows how

classified bug reports (i.e., BRST, BRPE, BRNL) are distributed across our training,

validation and test dataset. Note, for random-split, the distribution shows the average

of five random-splits.

37

Table 3.5: Cross-Encoder Dataset (Random Split)

Dataset Type Bug Reports q, d+ Pairs (Avg.) q, d− Pairs (Avg.) Total (Avg.)

Training 5,238 12,694 50,776 63,470
Test 1,497 3,715 14,860 18,575
Validation 748 1,829 7,316 9,145

Table 3.6: Cross-Encoder Dataset (Time-wise Split)

Dataset Type Bug Reports q, d+ Pairs q, d− Pairs Total

Training 5,236 12,727 50,908 63,635
Test 1,501 3,820 15,280 19,100
Validation 746 1,691 6,764 8,455

Expanding Training Set for Cross-Encoder:

To fine-tune our cross-encoder model, we extract both the buggy and bug-free ver-

sions of the code associated with each bug report from the GitHub repository of the

respective subject system. Using a Diff tool [5], we compare between buggy and bug-

free code and identify the method bodies in the buggy document that were changed

to correct the bug. These altered method bodies are selected as positive instances

(q, d+) for our model training against each bug report, with a label of 1 assigned to

them. This process is illustrated in Fig. 3.2.

In our dataset, we observed that each bug resulted in changes to a minimum of

1 and a maximum of 7 source code documents. To construct the training set for our

cross-encoder, which determines the semantic relevance between a bug report and a

document, we process all documents individually and generate multiple instances of

positive associations. For example, if a bug report requires changes to three docu-

ments, we create three training instances, linking the altered method bodies to the

bug report as positive instances for training. Our approach ensures that each training

instance has a limited number of tokens, ensuring compatibility with the transformer

model, which has a token limit of 512.

To generate negative samples (q, d−), we randomly select method bodies associated

with different bug reports for a given report at hand. We only consider source code

from different subject systems for these negative cases. This process is reiterated

four times to yield sufficient training instances for the model, and they are labeled

38

as 0. The choice of four negative instances against each positive instance is based on

a study conducted by Huang et al. [74]. They found no notable distinctions across

different numbers of negative samples and also endorsed the 4:1 ratio.

For the validation and test data, we followed the same approach to generate

positive and negative samples. Tables 3.5 and Table 3.6 summarize the training,

validation, and test sets for the cross-encoder across two types of experiments.

Dataset for Pre-training Model with Bug Reports:

To pre-train an existing baseline language model (e.g., CodeT5) with domain-specific

data, we collected thousands of bug reports from GitHub repositories hosting Java-

based projects using the GitHub API. Our selection process involved choosing the

top 100 repositories based on their star count and thus ensuring that they remained

active up to the date of selection. To maintain data integrity, we targeted the issue

reports labeled as ’bugs’ and collected reports submitted before April 2024. Addi-

tionally, we confirmed that none of these repositories were already included in the

Bench4BL dataset to prevent any bias. After collecting the bug reports, we meticu-

lously cleaned them to retain only their textual content using Beautiful Soup [1] and

excluded repositories with fewer than five bug reports. Finally, all these steps resulted

in a dataset of 70,884 bug reports from 74 repositories. Then, these bug reports were

used to pre-train the CodeT5 model.

3.4.2 Evaluation Metrics

To evaluate IQLoc in bug localization, we use three widely used metrics- MAP, MRR,

and HIT@K. These metrics have been frequently used by the relevant literature on

IR-based bug localization [127,129], and thus are highly relevant to our approach. To

perform ablation study involving our cross-encoder model, we used four commonly

used metrics – Accuracy, Precision, Recall, and F1 score.

Mean Average Precision (MAP)

Precision@K refers to precision for each occurrence of the buggy source document in

the ranked list. Average Precision calculates the average precision@K for all buggy

39

documents against a search query. Therefore, Mean Average Precision (MAP) is

computed by averaging the AP values across all queries (Q) from a dataset.

Pk =
No. of Relevant Items in Top-k

k

AP@K =
1

|D|

K∑
k=1

Pk ×Bk

MAP =
1

|Q|

Q∑
q=1

AP@Kq

Here, Pk calculates the precision for the kth element of the top K items in the

ranked list returned by a query. AP@K computes the average precision for a list of

K results against a query, utilizing Bk to determine if the kth document is buggy or

not. Bk outputs 1 for a match with the ground truth and 0 otherwise. D represents

the set of relevant instances that match the ground truth documents against a query.

Finally, MAP calculates the mean of the average precision (AP@K) across all the

individual queries q in the set Q.

Mean Reciprocal Rank (MRR)

Reciprocal Rank (RR) is associated to the rank of the first relevant result retrieved

by a technique. It calculates the reciprocal of the rank of the first relevant source

document within the ranked list returned by each query.

RRq =
1

Rank of First Relevant Item

MRR =
1

|Q|

|Q|∑
q=1

RRq

Here, RRq represents the Reciprocal Rank for a specific query q. Thus, the Mean

Reciprocal Rank (MRR) is calculated as the mean of the Reciprocal Ranks (RRq)

for all individual queries q in the set Q.

40

HIT@K

HIT@K or Recall@Top-K [136] refers to the proportion of queries for which a tech-

nique returns at least one relevant document among the top K retrieved results. The

higher the HIT@K values, the better the performance of a bug localization technique.

HIT@K =
1

|Q|

|Q|∑
q=1

1, rq ∈ G

0, otherwise

Here, Q is the set of all queries and rq is a binary indicator function that returns

1 if the query q has at least one ground truth item rq ∈ G within the top-K results,

and 0 otherwise.

Accuracy

Accuracy is a metric that determines the proportion of correctly predicted instances

out of the total instances evaluated.

Accuracy =
TP + TN

TP + FP + TN + FN

Here, TP (True Positive) and TN (True Negative) represent instances that are

correctly predicted as positive and negative, respectively. Conversely, FP (False Pos-

itive) and FN (False Negative) represent instances that are incorrectly predicted as

positive and negative, while in reality, they are negative and positive instances, respec-

tively. In the context of bug localization, positive instances denote buggy documents,

while negative instances denote non-buggy ones.

Precision

Precision measures the proportion of correctly predicted positive instances out of all

positive predictions made by a model.

Precision =
TP

TP + FP

Recall

Recall, also known as sensitivity, measures the proportion of correctly predicted pos-

itive instances out of all actual positive instances in the dataset.

41

Recall =
TP

TP + FN

F1 Score

The F1 Score provides a single measure that balances between precision and recall.

It is calculated as the harmonic mean of precision and recall. This balanced measure

is particularly valuable in scenarios where false positives and false negatives have

different implications, ensuring a robust assessment of a model’s performance.

F1 Score = 2× Precision×Recall

Precision + Recall

Table 3.7: Performance of IQLoc

Split Type MAP MRR HIT@1 HIT@5 HIT@10

Random Split 0.493 0.520 0.423 0.647 0.721
Time-wise Split 0.520 0.553 0.466 0.669 0.735

Table 3.8: Impact of the Selection of Top-K Results from Elasticsearch

Split Type HIT@1 HIT@5 HIT@10 HIT@50 HIT@100 HIT@200

Random Split 0.389 0.619 0.703 0.843 0.889 0.929
Time-wise Split 0.396 0.618 0.822 0.904 0.937 0.961

3.4.3 Evaluting IQLoc

Answering RQ1: Performance of IQLoc

Table 3.7 presents the performance of IQLoc in terms of Mean Average Precision

(MAP), Mean Reciprocal Rank (MRR), and accuracy at different top-K results

(HIT@1, HIT@5, HIT@10). For the randomly split datasets, we run the experi-

ments five times, and the table shows the mean performance from five separate runs.

On the other hand, we run our experiment once for the time-wise split dataset.

In the random split, IQLoc achieves a MAP of 0.493, indicating that, on average,

the relevant documents (a.k.a., buggy source code) rank higher than the irrelevant

ones. Similarly, the MRR is 0.520, suggesting that the first relevant document is,

on average, found within the top 2 positions. IQLoc achieves a HIT@1 of 0.423,

42

indicating that 42.3% of the bug reports have their relevant documents (a.k.a., buggy

source code) retrieved as the top-ranked result. It also achieves a HIT@5 of 0.647,

indicating that ≈65% of the bug reports have returned at least one buggy document

within the top 5 positions, whereas the HIT@10 measure is 0.721.

In the time-wise split, IQLoc demonstrates higher performance, achieving a MAP

of 0.520 and an MRR of 0.553. Besides, a HIT@1 of 0.466 indicates a substantial

performance improvement over its counterpart above. However, the improvement

is more noticeable for HIT@5 and HIT@10 metrics, where nearly 67% of the bug

reports that have at least one buggy document retrieved within the top 5 positions

and 73.5% within the top 10 positions, respectively. These metrics suggest that

IQLoc consistently performs well across different data splits. Moreover, its higher

performance across all metrics in the time-wise split implies that IQLoc potentially

captures temporal trends from past bug reports (i.e., time-wise split) and source code

versions to identify recent bugs within the code.

In our approach, we capture the top 100 results retrieved by the Elasticsearch

module for subsequent reranking (Step 2, Fig. 3.3). Previous studies in information

retrieval have also used a subset of results to rerank [83, 122, 156]. Our decision was

made after carefully analyzing different top-K results. As demonstrated in Table 3.8,

for the random split test set, we observed a HIT@100 of 0.889 and a HIT@200 of

0.929. That is, for ≈89% of the bug reports, a relevant result can be found within the

top 100 search results, and for ≈93% of the reports within the top 200 search results.

This is a slight 4.5% increase by considering an additional 100 results. For the time-

wise split, this difference is even smaller, only 2.6%. Besides, our reranking step relies

on a Transformer-based cross-encoder model, which demands significant computing

power. By considering only top 100 results, we thus strike a balance between the

relevance of the results and the management of our computational resources.

We also evaluate IQLoc’s performance in localizing different types of bug reports:

bug reports containing Stack Trace (ST), Program Element (PE), and Natural Lan-

guage (NL), as discussed in Section 3.4.1. In this case, we consider the Elasticsearch

as a traditional baseline adapted from Apache Lucene [57]. Table 3.9 presents the

results. In the time-wise split test set (Table 3.9a), IQLoc outperforms Elasticsearch

by 15.77% and 17.15% in MAP and MRR, respectively for bug reports containing

43

Table 3.9: Performance of IQLoc for Different Classes of Bug Reports

(a) Time-wise Split

Model MAP MRR HIT@1 HIT@5 HIT@10

ST
Baseline 0.488 0.513 0.443 0.594 0.686
IQLoc 0.565 0.601 0.535 0.698 0.730

PE
Baseline 0.599 0.621 0.505 0.768 0.874
IQLoc 0.689 0.737 0.674 0.811 0.863

NL
Baseline 0.442 0.467 0.350 0.612 0.709
IQLoc 0.460 0.487 0.382 0.626 0.720

(b) Random Split

Model MAP MRR HIT@1 HIT@5 HIT@10

ST
Baseline 0.492 0.513 0.421 0.637 0.721
IQLoc 0.561 0.592 0.503 0.708 0.755

PE
Baseline 0.582 0.632 0.542 0.759 0.819
IQLoc 0.655 0.687 0.602 0.771 0.843

NL
Baseline 0.423 0.454 0.353 0.592 0.680
IQLoc 0.432 0.456 0.350 0.596 0.686

stack traces (ST). It also improves such localization by detecting at least one buggy

document in the top-10 positions, with gains of 6.41%–20% in HIT@1, HIT@5, and

HIT@10. For bug reports with program elements (PE), performance improvements

range from 5.6% to 33.46% in the time-wise split, with a 1.2% drop in HIT@10.

In contrast, our techniques improves in all metrics for the bug reports containing

only natural language (NL), but the gains are smaller. IQLoc achieves only a 4.07%

increase in MAP and 4.28% in MRR. HIT@K improvements range from 1.57% to

9.14%, which is lower than the gains for ST and PE. For the random split dataset,

we observe a similar trend in localizing bug reports containing stack traces (ST) and

program elements (PE). For ST, IQLoc outperforms Elasticsearch by 4.72%–14.02%

across all metrics. For PE, the improvement ranges from 1.58% to 12.54%. However,

similar to the time-wise split, performance gains for NL bug reports remain minimal,

44

(a) Random Split (b) Time-wise Split

Figure 3.8: Impact of Query Reduction on Retrieval Performance

ranging from 0.44% to 2.13% across all metrics except HIT@1.

We also demonstrate how our reduced queries improve bug localization through

document reranking in IQLoc. To illustrate this, we present two analyses from two dif-

ferent perspectives. Figure 3.8 highlights the benefit of incorporating our reformulated

queries during the reranking step by comparing two methods: baseline Elasticsearch

and IQLoc, both evaluated using the top-10 results. In our analysis of randomly split

test sets, we found that both techniques retrieved buggy source documents for 944

bug reports. However, IQLoc localizes at least one buggy document for 182 more

bug reports that Elasticsearch could not. A similar pattern can be observed in the

time-wise split dataset, where IQLoc localized 148 more bugs for which Elasticsearch

could not succeed. It should be noted that baseline Elasticsearch also localized some

unique bugs, but they were much lower in number.

These analysis above led us to investigate the types of bug reports for which

IQLoc might excel or fail during localization. Figure 3.9 presents our findings for both

time-wise and random splits. In the randomly split test dataset, IQLoc successfully

localized the majority of bug reports containing stack traces (ST), accounting for

96.0% of the localized cases, compared to 71.1% for those containing program elements

(PE) and 32.9% for bug reports classified as natural language (NL). A similar pattern

is observed in the time-wise split, where 95.7% of bug reports with stack traces were

localized, followed by 63.5% with PE and 40.8% with NL.

45

Figure 3.9: IQLoc’s Performance for Different Types of Bug Reports

RQ1 Summary: IQLoc demonstrates promising performance in localizing

bugs, achieving a MAP score of up to 0.520— a 10.43% improvement over base-

line Elasticsearch. This improvement is driven by our query reduction strategy,

which uses Transformer-based reasoning of the buggy code to better match be-

tween a query and the code. Additionally, IQLoc excels at handling various

types of bug reports, successfully localizing up to 96.0% of those containing

stack traces.

(a) MAP & MRR (b) HIT@K

Figure 3.10: Impact of Query Length on Bug Localization

46

(a) MAP : CodeT5 vs. CodeBERT (b) MRR : CodeT5 vs. CodeBERT

Figure 3.11: Choice of Pre-trained Models for Query Reformulation

Answering RQ2: Impact of Query Length and Embedding Models on

IQLoc’s Performance

Fig. 3.10 shows how the length of our search queries (N) influences the performance

of IQLoc. Selection of search keywords is a crucial aspect of our technique since the

keywords can narrow down the search scope and position the relevant documents

at higher ranks during bug localization. However, determining the optimal number

of keywords in a query without compromising bug localization performance poses a

challenge.

To determine an optimal length for search queries (N), we use a fixed pre-trained

model, the baseline CodeT5 [168] model, during document reranking step while vary-

ing the length of queries. From Fig. 3.10 we see that the HIT@1 increases from 0.32

with 5 keywords to a maximum of 0.455 with a keyword length of 43, representing a

≈42% increase. Such a trend is consistent across other metrics, with improvements

of 27.64%, 37.61%, 34.61%, and 31.52% for MAP, MRR, HIT@5, and HIT@10, re-

spectively. However, we observe diminishing returns in performance improvement for

HIT@K as query length increases, reaching a plateau around the length of 15, where

performance improvement slows down. To balance between performance and query

specificity, we thus chose a maximum query length of 15 for our experiments.

We also investigate the role of embedding models in our query reformulation step

during bug localization, as the quality of reformulated queries directly impacts local-

ization effectiveness. Fig. 3.11 compares the performance of CodeT5 and CodeBERT

in terms of MAP and MRR to determine which model is more effective for gener-

ating reformulated queries in our proposed technique. Reformulated queries using

47

(a) MAP: Baseline vs. Pre-trained (b) MRR: Baseline vs. Pre-trained

Figure 3.12: Choice of Pre-trained, Domain-Specific Embedding Model for Query
Reformulation

CodeBERT achieve a MAP score of 0.306 for a keyword length of 5, which is 27.90%

lower than CodeT5’s score of 0.392. Although increasing the query length reduces the

performance gap, CodeBERT does not surpass CodeT5. For instance, at a keyword

length of 43, CodeBERT still performs 3.71% lower than CodeT5. A similar trend

is observed for MRR (Fig. 3.11b), where CodeBERT lags by 27.35% at a keyword

length of 5. Based on these performance differences, we selected CodeT5 for embed-

ding generation in our keyword extraction module, as it leads to more effective query

reformulations and thus enhances the overall bug localization performance.

We also wanted to investigate if domain-specific embedding helps in construct-

ing queries. Recognizing the importance of domain-specific pre-training to capture

nuanced language features [149], we pre-trained the CodeT5-small [168] model on a

comprehensive dataset containing bug reports (see Section 3.3.5 for details). This pre-

training aimed to equip the model with a deeper understanding of software bugs from

Java-based systems. Our findings indicate that the pre-trained model consistently

outperforms the baseline model across all metrics, achieving superior performance

even with fewer keywords. From Fig. 3.12, we see that the MAP improves from

0.39 to 0.42, representing a 9.68% increase over the baseline model using 5 keywords.

Similarly, it increases from 0.45 to 0.48 with 15 keywords, indicating a 6.98% improve-

ment. This trend holds true across various query lengths experimented with, ranging

from 5 to 43 for all metrics. Therefore, we choose the CodeT5 model pre-trained with

bug reports for our technique - IQLoc.

48

RQ2 Summary: Reformulated queries improved the performance of IQLoc in

bug localization (e.g., HIT@1 by ≈42%) over baseline queries (i.e., bug report),

with improvement maximizing on 15 keywords in a query. Similarly, a language

model pre-trained with bug reports enhances the performance of IQLoc (e.g.,

9.68% for MAP) by offering domain-specific embedding, with CodeT5 perform-

ing best among the models evaluated.

(a) CE Performance: Random Split

(b) CE Performance: Time-wise Split

Figure 3.13: Cross-Encoder’s Performance at Different Relevance Thresholds

49

Answering RQ3: Performance of the Cross-Encoder Model in

Determining Buggy Source Code Based on Program Semantics

In this section, we investigate the effectiveness of the cross-encoder model (adopted

by IQLoc) in identifying buggy code segments based on their program semantics.

Transformer-based cross-encoder models are designed to output probabilistic confi-

dence scores ranging from 0 to 1. We fine-tuned our model to classify code segments

as either buggy (i.e., 1) or non-buggy (i.e., 0) against on a given bug report. Fig.

3.13 illustrates the performance of our adopted cross-encoder model with various

configurations.

For the random split evaluation set (Fig. 3.13a), at threshold 0, the model achieves

the lowest accuracy of 19.5%, with the lowest precision and F1 scores and the highest

recall. This occurs because, at this threshold, the model classifies all instances as

positive (a.k.a., buggy), capturing all true positives (TP) but also misclassifying all

negative cases as false positives (FP). Since recall is calculated as TP/(TP + FN)

and FN = 0 in this scenario, recall remains at 1 despite poor precision or accuracy.

Once the threshold increases above 0 (e.g., 0.1), performance stabilizes, reaching

an accuracy of 91.4%, with precision, recall, and F1 scores of 81.3%, 73.8%, and

75.82%, respectively. However, at threshold 1, the opposite effect occurs— the model

classifies all instances as negative, correctly identifying all negative cases (TN) but

misclassifying all positive cases (TP), leading to a recall of 0. Since our evaluation

dataset consists of four times more negative cases than positive ones (discussed in

Section 3.4.1), the accuracy at threshold 1 is approximately 80%. It is noteworthy

that these cross-encoder results for the random split evaluation set are averaged over

five independent runs.

In the time-wise split scenario (Fig. 3.13b), our cross-encoder model exhibits sim-

ilar trends for thresholds 0 and 1. However, once the threshold surpasses 0.1, the

model stabilizes and demonstrates slightly improved performance across all metrics.

Starting with accuracy, the model shows a consistent upward trend, reaching ≈93%,

which is a 1.9% improvement over the random split dataset scenario. Similarly, pre-

cision, recall, and F1 scores remain relatively stable, hovering around 88.7%, 74.9%,

and 81.2%, respectively.

The precision of our cross-encoder models at both very high and low thresholds

50

suggests that it makes predictions closer to 1 and 0 for positive (contextually relevant)

and negative (contextually not relevant) outcomes, respectively, while maintaining

accuracy. Given our focus on the correctness of positive predictions (i.e., precision)

while maintaining overall correctness (i.e., accuracy), we set the threshold to 0.5 for

our experiments, which achieves the best balance between precision and recall, as

reflected in the F1 score.

RQ3 Summary: Our fine-tuned cross-encoder model can effectively identify

buggy and non-buggy source code segments leveraging their program semantics

and relevance to given a bug report. A threshold of 0.5 ensures an effective sep-

aration between the two types of source code by achieving up to 93% accuracy

and 81.1% precision.

Answering RQ4: Comparison with the Baseline Techniques

In this section, we compare our proposed technique IQLoc against existing bug lo-

calization techniques in terms of various evaluation metrics. In particular, we com-

pare IQLoc with five baseline techniques – Baseline Elasticsearch, BLUiR [136], Bliz-

zard [129], DNNLoc [92], and RLocator [29].

To replicate the baseline Elasticsearch technique, we indexed all source documents

of a subject system’s repository and capture the pre-processed bug reports as queries.

Then, we execute the queries with the Elasticsearch engine [6], which retrieves the

relevant source documents based on the BM25 algorithm [10] and Boolean query [13].

We use the default values for the parameters - k and b - in the BM25 algorithm.

BLUiR [136] employs a structured Information Retrieval approach where it lever-

ages the structural components of both source code documents and bug reports for

effective localization, which helps avoid spurious matching. To achieve this, BLUiR

collects four code elements (i.e., class names, method names, variable names, and

comments) from each source code document and two textual elements from each bug

report (i.e., bug title and description). Then, it conducts eight searches to compute

suspiciousness score for each code-text pair and then combines scores to calculate the

overall suspiciousness score for a source document. For the experiments, we collected

BLUiR’s replication package from the Bench4BL repository [96] and adapted it for

51

version-based replication. It uses Indri [148], a TF-IDF [97]-based search engine, as

its backend for experiments, which has become obsolete recently. Thus, we chose to

replicate the technique using Apache Lucene [57] with a TF-IDF-based scoring algo-

rithm. It should be noted that we adopted the formula suggested by Saha et al. [136]

for calculating the TF and IDF metrics, which were then fed to the TF-IDF-based

retrieval algorithm of Apache Lucene.

Blizzard [129] is an IR-based bug localization technique that leverages contextual

information from bug reports for query construction. It categorizes bug reports into

three types (i.e., NL-Natural Language, PE-Program Element, and ST-Stack Trace),

employs three separate graph-based techniques to construct queries from them, and

then retrieves buggy source documents from the corpus by executing the queries with

the Apache Lucene engine [57]. For the replication, we collected and adapted the

replication package hosted at GitHub [2] by the original authors.

DNNLoc [92] is the first technique for bug localization that combines Deep Learn-

ing and Information Retrieval. It uses several features – bug report-source code

similarity (rVSM score [84]), class name similarity, collaborative filtering, bug report

recency, and bug report frequency to train a deep learning model and then uses the

model to localize the bugs. To replicate DNNLoc, we trained appropriate models by

extracting features from our training sets, following the authors’ suggestions. Dur-

ing bug localization, we used these trained models to predict suspiciousness scores of

source code documents and to rank them.

RLocator [29] is a recent IR-based technique for bug localization that incorporates

reinforcement learning [80], modeling the localization task as a Markov Decision Pro-

cess (MDP) [171]. Before applying reinforcement learning (RL), it retrieves source

documents from Elasticsearch based on the bug report and filters suspicious doc-

uments using an XGBoost [34] model. It then employs an RL agent based on an

actor-critic framework [88] that attempts to rank relevant source documents at the

top positions, with MAP or MRR as reward signals. We collected the replication

package of RLocator from Zenodo [11] and adapted it for our study on version-based

bug localization while maintaining the original specifications of the authors.

From Table 3.10a (random split dataset), we see that existing techniques such

as baseline Elasticsearch achieve a MAP score of 0.457, while BLUiR, Blizzard, and

52

Table 3.10: Comparison between IQLoc and Baseline Techniques in Bug Localization

(a) Average Performance Metrics for Random Split

Technique MAP MRR HIT@1 HIT@5 HIT@10

Baseline Elasticsearch 0.457 0.486 0.389 0.618 0.703
BLUiR 0.470 0.504 0.393 0.655 0.745
Blizzard 0.480 0.510 0.410 0.648 0.735
DNNLoc 0.311 0.322 0.249 0.416 0.508
RLocator 0.478 0.511 0.419 0.652 0.726
IQLoc 0.493 0.520 0.423 0.647 0.721

(b) Performance Metrics for Time-wise Split

Technique MAP MRR HIT@1 HIT@5 HIT@10

Baseline Elasticsearh 0.471 0.496 0.396 0.618 0.714
BLUiR 0.508 0.539 0.429 0.686 0.786
BLIZZARD 0.494 0.525 0.419 0.670 0.753
DNNLoc 0.324 0.336 0.232 0.477 0.591
RLocator 0.505 0.532 0.439 0.683 0.731
IQLoc 0.520 0.553 0.466 0.669 0.735

RLocator achieve a comparative MAP score from 0.470 to 0.480, indicating ≈2.71%-

4.89% improvement. On the other hand, DNNLoc achieves a much lower MAP score

of 0.311. IQLoc, on the other hand, has a MAP score of 0.493, which is 2.71% to

58.52% better than the baseline scores. This shows that relevant documents rank

higher than irrelevant ones compared to other baseline techniques. Similar improve-

ments are observed for MRR and HIT@1, with increases of up to 61.49% and 69.88%,

respectively, indicating promising performance. Although IQLoc exhibits a marginal

decrease in HIT@5 and HIT@10 compared to BLUiR, Blizzard, and Rlocator, it

demonstrates an improvement of up to 55.53% and 41.9% over the baseline Elastic-

search and DNNLoc measures.

In Table 3.10b (time-wise split dataset), IQLoc’s performance also surpasses those

of baseline techniques. While Elasticsearch achieves a MAP score of 0.471, BLUiR,

Blizzard, and RLocator achieve comparative MAP scores between 0.494 and 0.508;

DNNLoc’s score is much lower at 0.324. In contrast, IQLoc achieves a MAP score

of 0.520, representing improvements ranging from 2.36% to 60.49% over the baseline

measures. Similar improvements are observed for MRR and HIT@1, ranging from

2.59%-64.58%, and 6.15%-100.9%, respectively. However, like the randomly split data

53

(a) Random Split

(b) Time-wise Split

Figure 3.14: Comparison of Baseline Techniques in Localizing Different Types of Bugs

(Table 3.10a), IQLoc experiences a marginal drop in HIT@5 and HIT@10 compared

to BLUiR and Blizzard. Nonetheless, it demonstrates improvements of up to 40.25%

and 24.37% over the baseline Elasticsearch and DNNLoc measures in these metrics.

We also demonstrate the effectiveness of IQLoc in localizing bugs from different

types of bug reports compared to baseline techniques. Fig. 3.14 presents the per-

formance of various methods in localizing bugs from the reports with Stack Trace

(ST), Program Elements (PE), and Natural Language (NL) [129]. For the random

split test set (Fig. 3.14a), Elasticsearch, BLUiR, and Blizzard show similar MAP

scores (0.54–0.58) for ST bug reports, while RLocator performs slightly better at

0.62. IQLoc outperforms all, achieving 0.66 MAP, a 6.42% improvement over RLoca-

tor. In the case of bug reports with program elements (PE), most techniques score

between 0.53 and 0.56, except Elasticsearch, which lags at 0.49, while IQLoc leads

with 0.56 MAP. DNNLoc consistently underperforms, scoring 0.36 for ST and 0.33 for

PE. For natural language-only (NL) bug reports, all techniques struggle, with IQLoc

performing comparably. A similar trend is observed in MRR, where IQLoc improves

54

(a) Random Split

(b) Time-wise Split

Figure 3.15: Performance of Different Techniques on Different Subject Systems

by 6.15%–86.49% for ST and 1.72%–126.92% for PE. In the case of natural language

bug reports (NL), MRR shows an improvement reaching ≈ 64%.

A similar pattern was observed in the time-wise split test set (Fig. 3.14b), where

IQLoc achieves 7.81%–91.67% improvement in ST and 3.63%–72.73% in PE in terms

of MAP. For MRR, IQLoc shows up to 80.48% improvement in bug reports with stack

traces and 66.67% improvement in those with program elements. However, for bug

reports containing only natural language, all techniques perform similarly, except for

DNNLoc, which remains the lowest-performing model.

We further analyze each techniques performance across 42 subject systems and

compare their MAP and MRR using box plots (Fig. 3.15). For the random split test

set (Fig. 3.15a), IQLoc achieves a higher median MAP than that of all competitors

except BLUiR. However, our technique outperforms others in terms of median MRR.

For the time-wise split test set (Fig. 3.15b), IQLoc outperforms all techniques with

55

Table 3.11: Statistical Test: IQLoc vs. Baselines

(a) Time-wise Split (MAP)

IQLoc vs p-value Effect-Size (Cliff’s δ)

Elasticsearch 0.0098 Large (0.71)

BLUiR 0.0176 Large (0.58)

Blizzard 0.0209 Medium (0.49)

DNNLoc 0.0063 Very Large (0.78)

RLocator 0.0228 Medium (0.47)

(b) Time-wise Split (HIT@1)

IQLoc vs p-value Effect-Size (Cliff’s δ)

Elasticsearch 0.0108 Large (0.52)

BLUiR 0.0257 Medium (0.42)

Blizzard 0.0181 Medium (0.44)

DNNLoc 0.0093 Very Large (0.70)

RLocator 0.0236 Medium (0.42)

a higher median value and a more compact interquartile range (IQR) for both MAP

and MRR, suggesting lower variability in performance. While BLUiR also shows a

compact IQR, its median value is lower. DNNLoc, despite being less variable, con-

sistently performs poorly across all subject systems, reinforcing its less effectiveness.

Overall, IQLoc demonstrates superior performance in localizing bugs across different

subject systems with a higher median measure and a reduced variability in perfor-

mance.

IQLoc’s performance improvements over the baseline measures demonstrate its ef-

fectiveness across both dataset splits. To further validate this efficacy, we conducted

Mann-Whitney Wilcoxon (a.k.a., Mann–Whitney U test) [18], a non-parametric sta-

tistical test. We use the SciPy library [78] to compute statistical significance of MAP

and HIT@1. For MAP, we capture all buggy documents that match the ground

truths, while for HIT@1, we focus on the first buggy document at top rank in the

entire test dataset. Both metrics are computed by comparing the results from IQLoc

and the baseline techniques using the test set, which contains queries from 42 sub-

ject systems. For each query, the ranked results are converted into binary vectors

based on their relevance to the ground truth, to assess their effectiveness in localizing

bugs. In the case of the time-wise split dataset, IQLoc demonstrated p-values ranging

from 0.0063 to 0.0228 when compared against baseline techniques (Table 3.11a) for

MAP. These p-values are below the significance threshold of 0.05, indicating statis-

tical significance. Moreover, IQLoc exhibited effect sizes ranging from medium to

very large, as measured by Cliff’s δ [18], further explaining the extent of differences.

Similarly, for HIT@1, IQLoc achieved comparable results, with p-values varying from

0.093 to 0.257, accompanied by similar effect sizes ranging from medium to very large

(Cliff’s δ, Table 3.11b). Note that we avoid measuring statistical significance for the

56

randomly split dataset, as we perform five independent runs and average the results

for our experiment. Given the evidence above, the null hypothesis is rejected, and

IQLoc’s performance is found to be significantly higher than the baseline measures.

RQ4 Summary: IQLoc outperforms baseline techniques significantly, with

MAP performance improvements of 58.52% for the random split dataset and

60.49% for the time-wise split dataset. This improvement stems from its ability

to localize various types of bugs across different subject systems. Addition-

ally, statistical significance tests confirm the superiority of our technique over

baseline techniques with medium to large effect sizes.

3.5 Related Work

3.5.1 IR based Bug Localization

Bug localization has been a key area of research for decades, driven by the significant

impacts and challenges of software bugs [187]. There are two primary categories of

bug localization: spectra-based and Information Retrieval (IR)-based [163]. Spectra-

based methods are known for their complexity and limited scalability [110, 162]. In

our work, we primarily focus on Information Retrieval for bug localization.

Traditional IR-based bug localization methods [84,129,136,164,165] typically rely

on the vector space model (VSM) [95], which analyzes the token overlap between bug

reports and source code to identify buggy documents. Several studies have extended

VSM by integrating additional contexts, such as bug report history [135], code change

history [172], or version history [143], into the IR process. For instance, Zhou et al.

introduced BugLocator [84] that employs a combined score of a modified VSM score

and previous bug fix history to localize bugs. The traditional VSM-based scoring [95]

method tends to show bias towards longer documents. To address this, they modified

the VSM-based scoring and introduced rVSM scoring, which enhances the compu-

tation of textual relevance between bug reports and code elements. BLUiR [136]

captures four types of structural components from the source code (i.e., class names,

method names, variable names, and comments) and two components from bug re-

ports (i.e., bug title and bug description). It then forms pairwise combinations of

57

these components to perform eight separate searches using Indri [148], leveraging a

modified TF-IDF approach. The final localization score is computed by summing the

scores obtained from these individual searches. AmaLgam [164] integrates BLUiR

and BugLocator techniques, along with version history inspired by Google by ana-

lyzing historical data from version control systems. These components undergo three

independent systems to generate rankings before producing the final ranked lists.

AmaLgam+ [165] takes a step further by incorporating stack trace and bug reporter

history, alongside AmaLgam’s contexts. It ranks files using five components and then

returns a final ranked list of source documents for bug localization. Recently, an

IR-based technique, PathIdea [32], utilizes bug report logs (e.g., log snippets, stack

traces) for bug localization. The authors employ a static analysis tool to construct a

file-level call graph and reconstruct system execution paths from the logs. To deter-

mine the suspiciousness score for each file, they combine the VSM score, a log score

that emphasizes files mentioned in the logs, and a path score that highlights files in

the execution path. Some IR-based bug localization methods employ more complex

mechanisms, such as Latent Dirichlet Allocation (LDA) [84] and Latent Semantic In-

dex (LSI) [121]. Nonetheless, simpler methods have shown comparable performance

while being more cost-efficient [96].

In our work, we employ a BM25-based approach (e.g., Elasticsearch [6]) to collect

the candidate source documents. Then, our subsequent modules combine the scala-

bility of textual relevance with Transformer-based code understanding grounded in

program semantics to retrieve buggy documents at top-ranked positions.

3.5.2 Query Reformulation

Studies by Mills et al. [109] and Rahman et al. [127] suggest that poor queries from

bug reports may adversely affect the performance of a VSM-based search. Conse-

quently, numerous approaches propose to construct queries to assist developers in

their tasks [69, 86, 129, 130]. These studies for query construction fall into two cate-

gories: frequency-based and graph-based keyword selection methods [127].

In frequency-based methods, researchers have utilized TF-IDF [97] and its vari-

ants to extract meaningful keywords from both bug reports and source code for use

as queries. For instance, Gay et al. [62] employed relevance feedback (RF) from users

58

to update the query. They implemented Rocchio’s expansion [42] method, enhancing

query performance by adding terms from relevant documents with increased weights

and suppressing or removing terms from irrelevant documents. Haiduc et al. [69]

proposed a technique that employs a machine learning model trained on 28 query

properties to recommend the best reformulation strategy for a given query. These

strategies include query reduction, Rocchio expansion, RSV expansion, or Dice ex-

pansion, selected based on the query’s properties and performance.

Graph-based methods analyze semantic and syntactic dependencies among words

to determine their importance. Rahman and Roy [129] applied the PageRank al-

gorithm [24] on constructed graphs to suggest search keywords from various sources.

Subsequently, they explored genetic algorithms [93] for near-optimal search query con-

struction, leveraging the vocabulary in bug reports for effective query building [127].

However, their genetic algorithm-based approach is costly and relies solely on the

textual relevance between bug reports and source documents.

These techniques typically use statistics and correlations to generate queries from

bug reports. However, they often fail to capture the contextual relevance between

bug reports and code which limits the effectiveness of query reformulations. In our

approach, we address this by leveraging the broader understanding of natural lan-

guage and program texts from a pre-trained language model and identifying the most

salient terms from both bug reports and code for query construction.

3.5.3 Deep Learning for Bug Localization

Recent advancements of deep learning in various domains (e.g., natural language pro-

cessing, and machine translation) have encouraged its application to bug localization.

DNNLOC, an early and influential work in the field of localization, is designed to

identify potentially buggy documents by learning from multiple features (i.e., rVSM

score, class name similarity, collaborative filtering, bug report recency, and bug re-

port frequency) of bug reports and source code. However, its reliance on certain

features like bug fixing recency and frequency is available for only 20-40% of the

bugs [84]. So, the unavailability of these features might affect the performance of the

model. A recent technique, FBL-BERT [37], incorporates the ColBERT model [82]

for changeset-based bug localization. ColBERT uses a late interaction architecture,

59

independently encoding bug reports and changesets with BERT, followed by efficient

vector similarity calculations for relevance estimation. FBL-BERT enhances this by

considering different levels of changeset granularity, enabling offline pre-computation

of changeset embeddings, and employing a two-stage process of retrieving and rerank-

ing for bug localization. Nonetheless, the model may not be as effective in large-scale

environments, where big software projects produces thousands of commits a day.

Another recent bug localization technique, RLocator [29], is a first-of-its-kind rein-

forcement learning (RL) technique for bug localization. The technique attempts to

optimize the ranking of a set of documents by employing RL agents based on an

actor-critic [88] framework with entropy regularization, using a reward signal derived

from ranking metrics (e.g., MAP and MRR) for localizing bugs. Other approaches,

such as DeepLoator [178] proposed bug localization using Convolutional Neural Net-

works (CNN). DreamLoc [123] addresses the problem of bug localization by proposing

a deep and wide architecture. The deep component applies attention mechanisms to

capture textual relevance, while the wide component incorporates domain knowledge

through a linear model using features such as bug-fixing history and code complex-

ity. However, in addition to technical challenges, these techniques may encounter

inefficiencies when dealing with large numbers of documents for bug localization.

In contrast, our hybrid approach addresses these challenges by focusing on a

limited set of documents using Transformer models for scalability and performance.

Leveraging the self-attention mechanism of the Transformer model, we process both

source code and bug reports simultaneously and analyze their semantics, which helps

detect their contextual relevance. This methodology offers a promising avenue for

overcoming the limitations faced by existing bug localization techniques.

3.6 Threats to Validity

Threats to internal validity relate to experimental errors and biases. Re-implementation

of the existing baseline techniques could pose a threat. For BLUiR, Blizzard and

RLocator, we collected the replication packages from Bench4BL, Rahman et al.’s

GitHub repositories and from Zenodo [3, 11, 136]. However, since the Indri [148] li-

brary has become obsolete, we replaced that with Apache Lucene [57] in the BLUiR

replication. For DNNLOC, as the replication package is not available by the original

60

authors, we had to replicate it ourselves. While we acknowledge the potential for

implementation errors, we addressed this concern by adhering to the settings and

parameters of the original authors through extensive testing. We also repeat our

experiments on two different datasets [84, 129] and compare the performance with

baselines to mitigate any bias due to random trials.

Threats to external validity relate to the generalizability of our work. Even though

IQLoc is evaluated using only Java code, the underlying models can be adapted to

different programming languages through appropriate fine-tuning [186].

Threats to construct validity relate to the evaluation metrics for our work. We

use several metrics such as Mean Average Precision (MAP), Mean Reciprocal Rank

(MRR), and HIT@K, which are widely adopted in recommendation systems [129,131,

136] and Information Retrieval [28,71]. This confirms no or little threats to construct

validity.

Finally, we adapted Bench4BL [96] dataset for our experiments, which might

contain biases [87] and data quality issues (e.g., misclassified bugs, erroneously labeled

buggy files). During the training of the Cross-Encoder model, we accepted method

bodies containing buggy lines from Java classes as context. However, the impact of

different context sizes was not well tested, which we consider as a scope of future

work.

3.7 Summary

To summarize, in this study, we introduce IQLoc, a hybrid approach that capital-

izes on the strengths of both Information Retrieval (IR) and LLM-based program

understanding to support bug localization. Our approach enhances IR-based bug

localization with reformulated queries, derived from the program understanding of

Transformer models. By going beyond surface-level semantic relevance, IQLoc iden-

tifies buggy code more accurately. In our evaluation, we compared IQLoc against

several baselines using three key metrics: Mean Average Precision (MAP), Mean

Reciprocal Rank (MRR), and HIT@K. The results show that IQLoc consistently out-

performs the baselines, with improvements of up to 60.49% in MAP and 64.58% in

MRR.

All these findings highlight the potential of IQLoc as a robust technique for bug

61

localization that seamlessly integrates the textual relevance of traditional techniques

with the program semantic understanding of modern Transformer-based models, set-

ting a new benchmark for performance and reliability in addressing software bugs.

However, while our technique significantly improves bug localization performance, it

might fall short for certain types of bug reports that warrant deeper contextual un-

derstanding and more effective search queries. To address this, Chapter 4 introduces

a novel technique that introduces Intelligent Relevance Feedback leveraging LLM to

further advance bug localization using Information Retrieval.

Chapter 4

Improved IR-based Bug Localization with Intelligent

Relevance Feedback

Our first study in Chapter 3 incorporates program understanding of pre-trained lan-

guage models (e.g., CodeBERT, CodeT5) into Information Retrieval methods for

localizing bugs. However, it struggles when localizing bugs for the bug reports pri-

marily written in natural language. In other words, despite being empowered by

program semantic understanding, it suffers from less informative queries from bug

reports. To address this limitation, we incorporate Intelligent Relevance Feedback

(IRF) into Information Retrieval leveraging the reasoning capabilities of Large Lan-

guage Models and support bug localization. Our evaluation using three performance

metrics demonstrates that our proposed solution effectively localizes software bugs

and outperforms multiple baseline techniques from the literature.

The rest of this chapter is structured as follows: Section 4.1 introduces BRaIn

and outlines the key contributions of this study. Section 4.2 presents a motivating

example to demonstrate the effectiveness of our approach. Section 4.3 presents the

methodology of our proposed approach. Section 4.4 details the dataset construction

process, metrics and presents evaluation results. Section 4.5 reviews existing relevant

studies in the domain of bug localization. Section 4.6 examines potential threats to

the validity of our findings. Finally, Section 4.7 concludes the chapter with a summary

of our study.

4.1 Introduction

Software bugs can cause major financial losses and lead to data breaches, security

vulnerabilities, and operational disruptions [41, 56]. A recent software bug from

Microsoft-owned CrowdStrike caused several hours of disruption in the U.S. air-

line industry, nearly halting operations and resulting in over $10 billion in dam-

ages [170,174]. Developers at the major IT companies, such as Microsoft and Google,

62

63

have reported bug resolution as a top concern [187]. According to existing studies up

to 50% of the programming time is spent by developers on finding, understanding,

and fixing software issues [25, 46, 115]. Thus, any automated support to tackle these

challenges can greatly benefit the developers.

Software bugs are submitted to bug-tracking systems (e.g., Bugzilla, JIRA) as bug

reports, which might capture crucial hints for resolving software-related issues. De-

velopers often rely on these reports to trace the origin of bugs in the code. However,

the content and quality of bug reports can vary significantly based on their submit-

ters’ level of expertise and articulation skills. In particular, there might be variations

in word choice and presence of technical terms [60, 129]. Such variations pose chal-

lenges for developers when pinpointing the root cause of defects, even for seasoned

practitioners [127]. To address these challenges, there has been significant research

targeting the detection or localization of software bugs over the last few decades.

Researchers have presented two major categories of methods to automatically lo-

calize software bugs: program spectrum analysis and Information Retrieval. First,

spectrum-based methods rely on program execution traces for fault localization. How-

ever, the execution traces are not always readily accessible, which makes these meth-

ods less scalable [110, 162]. On the other hand, Information Retrieval (IR)-based

methods use overlapping terms or keywords between bug reports and source code to

localize bugs [91,94,114,163,167]. They are lightweight and scalable. However, they

also struggle with the vocabulary mismatch problems [60] and may not always deliver

satisfactory results due to sporadic term matching. Researchers have also incorpo-

rated historical data from past bug reports, code change history, past bug fixes, and

bug recurrences [164, 181]. Although these enhancements have been reported to im-

prove the performance of the IR-based methods in localizing bugs, a recent study [96]

suggests that they do not significantly outperform the previous methods.

Recent IR-based techniques focus on search queries and attempt to improve their

queries by capturing syntactic, co-occurrence, and hierarchical dependencies among

the words in bug reports [30, 127, 129, 143]. However, these methods only use terms

found in bug reports, which could be poorly written or insufficient [127]. As a result,

they frequently fail to bridge the gap between natural language from bug reports and

64

programming code from a project when searching for software bugs. To address this is-

sue, several techniques attempt to enhance queries with relevant terms extracted from

source documents through relevance feedback mechanisms [61,68,85,98,129,161,182].

However, the majority of these techniques naively consider the top few documents

(based on textual similarity) as relevant, overlooking the need for a comprehensive

understanding of the code. As a result, they may not always capture the most mean-

ingful terms from source code for their search queries. [30, 85]. Thus, the existing

IR-based techniques for bug localization suffer from two major challenges as follows.

(a) Relevance feedback against search queries might not be always rel-

evant: Gay et al. [68] proposed a manual, iterative approach that leverages rele-

vance feedback from developers and constructs queries to search for buggy source

documents. In contrast, Sisman et al. [144] and Kim et al. [85] select the top few

documents as relevant (a.k.a., pseudo relevance feedback) and leverage the feedback

to improve their search queries. However, these techniques rely heavily on textually

similar documents, which may not be always relevant, especially when dealing with

source code and bug reports. Thus, a deeper understanding of both bug reports

and source code is warranted to improve the relevance feedback mechanism and the

subsequent steps of Information Retrieval (e.g., query reformulation, retrieval).

(b) Textual and semantic relevance might not be sufficient: Bug reports

contain not only natural language texts but also technical jargons, commit diffs,

stack traces, and program elements [129]. These artifacts describe the context and

symptoms of encountered bugs [30]. Since natural language is loosely structured,

it can introduce ambiguity by expressing the same idea in various ways [60]. Sim-

ilarly, programming languages are more structured yet allow syntactically diverse

expressions (e.g., iterative vs. functional approaches) and arbitrary naming conven-

tions [14, 43, 144]. This flexibility can result in textual mismatches, where keywords

or key phrases in the bug report (e.g., “download failed”) do not directly match the

identifiers in the code (e.g., fetchResource). At the same time, semantic mismatches

can arise when a problem encountered in the bug report does not correspond to the

programming task implemented in the code. For example, the encountered problem

– “download failed” – might not align well with the task – “HTTP/FTP operation

task and get packets” if the word-level semantics are considered only. It requires

65

an understanding of the relationship between network operations and file download-

ing to establish their connection. In other words, to localize such bugs, automated

tools or methods need to go beyond surface-level matching and comprehensively un-

derstand the context of an encountered problem as well as the functionality of the

corresponding source code.

In this paper, we present a novel technique – BRaIn – to support bug local-

ization using Information Retrieval (IR) and Intelligent Relevance Feedback (IRF).

Our approach overcomes the challenge of contextual understanding of software bugs

using Transformer models [159] and localizes the bugs leveraging such understand-

ing. First, BRaIn collects potentially buggy documents from a codebase using an IR

method (e.g., BM25) and analyzes their contextual relevance to a bug by employing

large language models (e.g., Mistral [151]). That is, unlike the existing methods, our

method captures more expert-like feedback to a query (a.k.a., Intelligent Relevance

Feedback). Second, it extracts appropriate terms from these documents and expands

the original query (i.e., preprocessed bug report) by further leveraging the captured

feedback. Finally, BRaIn reranks the source documents by executing the expanded

query and employing the relevance feedback, providing a refined list of suspicious

source documents.

We conducted experiments using 4,683 bug reports from a benchmark dataset–

Bench4BL [96]. We evaluated the performance of our approach using three commonly

used metrics: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and

HIT@K. Our approach is compared with six suitable baselines from the literature [29,

92, 129, 136, 144, 180]. BRaIn consistently outperformed existing techniques, showing

19.3% and 87.6% higher MAP scores than that of traditional and Machine Learning

(ML)-based approaches, respectively. Similar gains were observed in MRR (17.5% and

89.5%) and HIT@10 (12.2% and 48.8%). These results underscore the effectiveness

and superiority of our proposed technique in software bug localization.

Thus, this research make following contributions-

• A novel relevance feedback mechanism, namely Intelligent Relevance Feedback

(IRF), that leverages the code understanding and reasoning capability of the

LLM to offer useful feedback to a search query. It is neither naive like pseudo-

relevance feedback nor costly like human feedback.

66

• A novel approach – BRaIn – that localizes software bugs using effective search

queries and retrieval, supported by the Intelligent Relevance Feedback mecha-

nism.

• An extensive evaluation of BRaIn using three commonly used metrics and

≈4.7K bug reports and comparison with six baselines from three areas of the

literature.

• A replication package 1 with a prototype, a curated dataset, and configuration

details for third-party replication and reuse.

4.2 Motivational Example

In this section, we present a motivating example to demonstrate the benefits of our

proposed technique for bug localization. Let us consider the example bug report in

Table 4.1 that discusses access problems to an LDAP server. The bug manifests as

a failure in the authentication process, where the system returns an HTTP code of

403 (a.k.a., forbidden) instead of prompting for necessary credentials. This behavior

results in a denial of access to the LDAP services and hinders any migration to a

newer version of the services.

Fig. 4.1 presents the source code triggering the bug. The root cause of this bug is

a subtle omission in the code handling authentication process. We see that the switch

statement in the buggy version of code fails to account for the BASIC authentication

type. Instead, it handles the PLAIN authentication type, which is semantically closer

but not equivalent. On the other hand, the bug report mentions “BASIC” HTTP

authentication, which is not present in the target code. This terminology mismatch

creates a disconnect between the high-level system behavior described in the bug re-

port and the code level implementation, making the detection of bugs challenging. As

a result, traditional text-based search methods perform poorly and retrieve the buggy

code at 72nd, 13th, and 24th positions when title, description, or their combination

are used as queries, respectively (Table 4.1). Even after employing embedding-based

semantic relevance, NextBug [180] struggles to link the code to the bug, placing it at

25th position.

1https://github.com/asifsamir/BRaIn

67

Table 4.1: An Example of Bug Report and Search Techniques

Bug ID# 2013 (Wildfly CORE) Rank

Title Unable to access HTTP management interface se-
cured by legacy LDAP realm.

72

Description When the HTTP management interface is secured
with a legacy security realm using LDAP, the user
is not prompted to provide credentials as should be
in the case of BASIC HTTP authentication mech-
anism. Instead, a 403 HTTP status is returned
directly. Users won’t be able to migrate their cur-
rent (6.4, 7.0) configuration to 7.1 without change.

13

Baseline Query Bug Title + Bug Description 24
NextBug [180] Cosine Similarity (Embedding + TF-IDF) between

Bug Report and Source Documents
25

BRaIn Intelligent Relevance Feedback + Query Expansion
+ Scoring

1

Figure 4.1: Buggy Code with Diff

The above evidence suggests that an in-depth analysis involving contextual rele-

vance is essential. A seasoned developer would recognize the missing clause of BASIC

HTTP authentication in the code, although it is not explicitly stated in the bug re-

port. By probing deeper, they would infer that the missing BASIC authentication is

likely the root cause of the reported issue.

68

Large language models (e.g., Mistral) are exposed to a vast amount of data, in-

cluding text and code. As a result, they can identify patterns (as humans do) and

infer missing details, making them adept at handling tasks that require deep con-

textual understanding. As shown in Table 4.1, BRaIn leverages such capabilities to

obtain intelligent feedback against its query, reformulates the query, and returns the

buggy code as the topmost result by executing the query against an IR-based method

(e.g., BM25 [133]).

Figure 4.2: Schematic Diagram of BRaIn:
(A) Document Indexing & Retrieval, (B) Intelligent Relevance Feedback, (C) Query

Expansion, and (D) Bug Localization

4.3 Methodology

Fig. 4.2 shows the schematic diagram of our proposed technique – BRaIn – for

software bug localization. We discuss its different steps in the following section.

4.3.1 Document Indexing and Retrieval

Indexing

To detect software bugs using Information Retrieval (IR), the first step is to index

the source code documents from a code repository. We chose Elasticsearch [6] for

indexing due to its reliability, support for diverse data types, and easy integration with

computing systems (e.g., cloud). We collected 45 subject systems from an existing

benchmark dataset – Bench4BL [96] – and indexed the source code (Step 1, Fig.

4.2) from 684 buggy versions of these systems. Our idea was to detect a bug in the

exact version of the software system stated in the corresponding bug report. During

the indexing, we employed Elasticsearch’s default analyzer to perform common pre-

processing operations (e.g., tokenization, lowercase conversion, and removal of stop

69

words).

Retrieval of Potentially Buggy Documents using Textual Relevance

To retrieve potentially buggy documents, we use bug reports (i.e., bug title and de-

scription) as queries (Step 2, Fig. 4.2). When we pass these queries to Elasticsearch,

it preprocesses them using the standard analyzer and returns the top-K (e.g., 50)

results through query execution. To narrow down the search results, we also ap-

ply additional filters, such as system and version information from each bug report.

Without these filters, the retrieved documents could be irrelevant or noisy. This step

provides a set of source documents ranked by their textual relevance against a bug

report by employing Elasticsearch’s default retrieval algorithm, Okapi BM25 [133].

4.3.2 Intelligent Relevance Feedback

Once we have the results from Elasticsearch, we employ advanced prompt methods

and Large Language Models (LLM) to determine the relevance between a bug re-

port and each result (i.e., source code). LLMs have shown remarkable capabilities

understanding natural language texts and source code [51, 67, 99]. We leverage their

capabilities to capture intelligent relevance feedback against a query (a.k.a., bug re-

port). To achieve this, we use prompt engineering, document segmentation, and

finally relevance estimation as follows.

Prompt Engineering: Prompting is a novel method that instructs the LLMs

(e.g., Mistral) to generate meaningful responses without any expensive training [100,

113, 169]. It involves crafting appropriate instructions to guide LLM outputs and

make them applicable to different problem-solving tasks [22, 33, 53, 106, 141]. LLMs

have been found to be effective with well-designed prompts that are clear, specific, and

actionable [100, 138]. Following the insights, we first developed a candidate prompt

based on efficient prompt-building guidelines [9, 153]. Our goal was to determine

whether a given code segment triggers a reported bug. It instructs the LLM to find

the relevance, deliver the output in a JSON format, and act as a rational software

engineer, incorporating the contextual information from the bug report and code

segment.

To refine our candidate prompt, we employed SAMMO [137], a compile-time

70

framework that optimizes prompts by exploring various configurations through mu-

tation operations. We configured SAMMO with LLaMA-3 [155] and used a small

dataset of 20 bug reports with corresponding buggy code segments (ground truth)

to guide our optimization process. SAMMO iteratively generated prompt variants

by applying various modification operations to the candidate prompt with LLaMA’s

assistance. In each iteration, we used LLaMA, bug reports and ground truth code to

determine the fitness of each prompt and provide a performance update to SAMMO.

Through an extensive search, SAMMO was able to find an optimized version of the

prompt. Table 4.2 shows the optimized prompt template, used in the subsequent

steps of our technique.

Segmentation: We divide the source code documents from Elasticsearch into

smaller segments to determine their relevance using prompting and LLM (Step 3, Fig.

4.2). According to an existing work [102], breaking up texts into smaller segments

helps the attention mechanism focus on specific parts, which could be useful for our

relevance estimation task. In our work, we adopt a simple method to capture code

segments rather than collecting program slices. The slicing methods often create slices

that are either too small to capture meaningful context or too large, introducing

irrelevant contexts and potentially exceeding the token limits of the LLMs [147].

Therefore, we used a widely adopted library for static analysis – JavaParser [55], to

extract code segments such as methods, constructors, interfaces, and enums from a

document.

Determining the relevance of code: To determine code relevance, we employ

LLaMA [155], Mistral [151], and Qwen [152] models in a zero-shot setting, and provide

a bug report and a code segment (e.g., method, constructor) as context (Step 4, Fig.

4.2), respecting the token limits of these models (e.g., 8,192). We used the optimized

template in Table 4.2 for LLaMA and Qwen, consisting of three key elements: system,

user, assistant. On the other hand, the system element does not apply to Mistral,

and thus its prompt template was adapted accordingly. We use Hugging Face’s [176]

AutoTokenizer to perform model-specific formatting of the prompt and vLLM [90]

to parallelize computations across the GPU in batches, increasing throughput. Each

employed model against our context provides a response. For example, for the show-

case bug report (Table 4.1) and corresponding buggy code (Fig. 4.1), we obtained

71

the JSON response {"relevance": "yes"} from the Mistral. We also found a small

number of cases where the outputs are malformed or incomplete JSON. In such in-

stances, we perform string matching within the response (e.g., yes, no) to capture

the relevance estimate of the code by the LLM. The relevance estimates of the code

segments (collected from the results of Elasticsearch) serve as an intelligent feedback

by the LLM to the original query. We coin this as Intelligent Relevance Feedback

(IRF).

Table 4.2: Prompt Template for Relevance Feedback

System:
You are a helpful AI software engineer specializing in identifying buggy code
segments given a bug report. Analyze the provided bug report and the JAVA
code segment to determine if the code segment is responsible for causing the
bug described in the bug report. You need to understand the functionality of
the code segment and the details of the bug report to determine the relevance
of the code segment to the bug report.
There are two possible outputs: ‘yes’, ‘no’.
- ‘yes’: The code is responsible for the bug described in the bug report.
- ‘no’: The code is NOT responsible for the bug described in the bug report.
Provide your output in JSON format like this sample: {“relevance”: “yes”}.
Act like a rational software engineer and provide output. Avoid emotion and
extra text other than JSON.
User:
Analyze the following bug report and code segment:
Bug Report: <BUG REPORT>
Code Segment: <CODE SEGMENT>

Please determine if the code segment is responsible for the bug described in
the bug report.
Assistant:

4.3.3 Query Expansion

Using the Intelligent Relevance Feedback (IRF), we expand an original query (Step

6, Fig. 4.2). Unlike the earlier work that relies on pseudo-relevance feedback [68,85],

we choose the source code documents marked as relevant by the LLM for query

expansion. In pseudo-relevance feedback, the top few documents retrieved by an IR

method are naively considered as relevant and are used for query expansion. On

72

the other hand, our underlying idea is that documents contextually relevant to the

bug reports (i.e., IRF) provide terms that can complement the original query. We

adapt an existing work of Rahman et al. [128] to capture appropriate terms from the

relevant source documents as follows.

First, we parse each of the source documents retrieved by Elasticsearch and extract

class, method, and field signatures from them. These signatures capture the intent of

the code, whereas the detailed implementation code could be noisy [128]. We extract

the signatures using a lightweight Python library – Javalang [7]. Next, we split camel

case tokens from these signatures and turn them into textual phrases by combining

their split tokens. We preprocess each of the phrases by filtering out stop words

and programming keywords. Then, we construct a term graph G(V,E) by encoding

terms as vertices (V) and co-occurring terms as connecting edges (E). Subsequently,

we apply the PageRank algorithm [24] in Eq. 4.1 to the term graph to select the

influential terms.

PR(Vi) =
1− d

N
+ d

∑
Vj∈M(Vi)

PR(Vj)

L(Vj)
(4.1)

Here, PR(Vi) represents the PageRank of vertex Vi. The term d denotes the

damping factor with a default set to 0.85. N refers to the total number of vertices in

the graph, while M(Vi) indicates the set of vertices linked to Vi. Finally, PR(Vj) and

L(Vj) represent the PageRank and outbound links of vertex Vj.

The algorithm assigns an initial score to each vertex (Vi) and iteratively updates

it, prioritizing the vertices with higher connections. This process repeats until the

scores stabilize or the algorithm reaches its maximum iteration limit (e.g., 100). Once

the computation is done, we select the top-N (e.g., 10) weighted terms returned by

the algorithm [128]. Finally, we expand the original query (i.e., bug report) with these

terms, complementing bug reports with contextually relevant terms from source code,

leveraging intelligent relevance feedback.

4.3.4 Bug Localization

We leverage our expanded query above and Intelligent Relevance Feedback (IRF)

from the LLM to localize the buggy source documents as follows.

73

Reranking

We determine the relevance between each result from Elasticsearch and our expanded

query employing BM25 algorithm, and rerank them according to their relevance (Step

7, Fig. 4.2). This step provides us with ranked results and their BM25 scores. The

updated ranks could be useful since the expanded query contains more meaningful

terms from the source documents.

Rescoring

We also enhance the ranking of source documents by incorporating IRF from LLM

into their scores (Step 8, Fig. 4.2). First, we normalize the BM25 scores of the

retrieved documents using a softmax function [58], producing a set of scores that

add up to 1. The softmax function amplifies the differences among its input values

exponentially, making their difference clearer. Given that the BM25 scores of the

documents could have high variance, this allows the softmax function to highlight the

textually relevant results. However, since textual relevance might not be sufficient, we

also leverage the LLM’s feedback against each result document. To incorporate this,

we promote the relevant documents and penalize the irrelevant ones, marked by the

LLM. This combined approach (Eq. 4.2) incorporates both textual and contextual

relevance in the document ranking as follows.

scorei =
ezi∑n
j=1 e

zj
· ri, ri =

1, if ith doc is relevant

0, otherwise
(4.2)

Here, scorei represents the score of the ith document. The term ri denotes the

binary relevance feedback, indicating whether the document is relevant or not (details

in Section 4.3.2). The terms zi and zj in the softmax function correspond to the BM25

scores of documents i and j.

Finally, we rank the source documents based on their scores for their potential to

be buggy (Step 9, Fig. 4.2) and return the top-K (e.g., K=10) documents. Our scoring

process aims to bridge the gap between bug reports and source code by incorporating

a deeper contextual understanding of the LLM and going beyond their textual and

semantic relevance (Table 4.1).

74

Table 4.3: Dataset

(a) Dataset Summary

Project Systems Bug Reports

Spring 25 1,802
Apache 25 1,802
Wildfly 5 806

Commons 8 507
JBoss 1 9

Total 42 4,683

(b) Train-Test Split

Project Train Test

Spring 1,429 373
Apache 1,246 313
Wildfly 643 163

Commons 402 105
JBoss 7 2

Total 3,727 956

4.4 Experiments

We curate a dataset of ≈4.7K bug reports from the benchmark dataset Bench4BL

and evaluate using three appropriate metrics from the relevant literature — Mean

Average Precision (MAP), Mean Reciprocal Rank (MRR), and HIT@K (K=1, 5,

10) [129, 136]. We experiment with three different LLMs and compare our solution

–BRaIn– against eight relevant baselines to place our work in the literature. Through

our experiments, we answer three research questions as follows:

• RQ1: (a) How does BRaIn perform in localizing software bugs? (b) Does BRaIn

enhance the localization of bugs that require changing multiple documents? (c)

Can it improve the localization of bugs that are reported poorly?

• RQ2: How do IRF-based query expansion and document ranking contribute to

the performance of BRaIn?

• RQ3: Can BRaIn outperform the relevant baseline techniques in bug localiza-

tion?

4.4.1 Dataset Construction

In our experiment, we used the Bench4BL [96], a comprehensive benchmark dataset

that contains 10,017 bug reports from 51 open-source systems, covering a total of 695

software versions. Our initial assessment revealed that bug reports from the older

systems lacked crucial versioning information, making them unsuitable for our study.

Additionally, we could not accurately link some bug reports to their corresponding

75

buggy code within the code repositories. Hence, we excluded these bug reports from

our dataset. We also found bug reports containing only stack traces without accom-

panying any textual descriptions of their bugs. We identified those bug reports using

regular expressions [129] and excluded them from the dataset. Following these refine-

ment steps, our final dataset comprised 4,683 bug reports from 42 different systems

spanning across 684 versions. Table 4.3-a summarizes our curated dataset.

To conduct our experiments and compare with deep learning-based baseline tech-

niques, we used an optimal 80:20 dataset split [65]. This split was done chronologically

within each system to ensure that the training set consists of the older 80% of the

data, while the test set contains the newest 20% to imitate a real-world scenario.

Table 4.3-b provides a summary of our training and test datasets.

4.4.2 Evaluation Metrics

Mean Average Precision (MAP)

Precision@K indicates the precision for each instance of a buggy source document in

the ranked list. Average Precision computes the average Precision@K for all buggy

documents in relation to a specific search query. Consequently, Mean Average Preci-

sion (MAP) is obtained by averaging the Average Precision values across all queries

(Q) within a dataset.

Pk =
No. of Relevant Items in Top-k

k

AP@K =
1

|D|

K∑
k=1

Pk ×Bk

MAP =
1

|Q|

Q∑
q=1

AP@Kq

Here, AP@K computes average precision for top-K results, where Pk is precision

at position k and Bk indicates if item k is buggy (1) or not (0). MAP averages this

across all queries q in dataset Q, with D being the ground truth documents.

76

Mean Reciprocal Rank (MRR)

Reciprocal Rank (RR) refers to the rank of the first relevant result retrieved by a

technique. It is defined as the reciprocal of the rank of the first relevant source

document within the ranked list for each query.

RRq =
1

Rank of First Relevant Item

MRR =
1

|Q|

|Q|∑
q=1

RRq

Here, MRR averages the Reciprocal Ranks (RRq) across all queries q in set Q,

where RRq is the Reciprocal Rank for query q.

HIT@K

HIT@K [136] measures the proportion of queries for which a technique retrieves at

least one relevant document among the top-K results. Higher HIT@K values indicate

better performance in bug localization techniques.

HIT@K =
1

|Q|

|Q|∑
q=1

1, rq ∈ G

0, otherwise

Here, rq returns 1 if query q has a ground truth item in the top-K results (0

otherwise), where Q is the set of all queries.

4.4.3 Selection of LLM

We select three Large Language Models (LLM) to design our techniques and conduct

our experiments. We adopt three important criteria to select the models: (a) they

should be open-source instruction models, (b) they need to have a quantized version

to reduce computational demand, and (c) they should have similar numbers of pa-

rameters to allow for fair comparisons. Based on these criteria, we chose LLaMA-3

8B Instruct [155], Mistral v0.3 7B Instruct [151], and Qwen 1.5 7B Chat [152]. They

were the top models from instruct category on the Huggingface Open LLM leader-

board [16] during July 2024. We use the 8 bit quantized GPTQ versions of these

77

models [59] to achieve computational efficiency and leverage vLLM [90] for paral-

lelization. We conducted the experiments on Nvidia V100 GPU-enabled machines

with 16 GB vRAM in a cluster computing environment.

Table 4.4: Performance of BRaIn

Techniques MAP MRR HIT@1 HIT@5 HIT@10

Elasticsearch 0.484 0.513 0.413 0.647 0.732

BRaIn (LLaMA) 0.534 0.568 0.470 0.701 0.766
BRaIn (Mistral) 0.537 0.571 0.469 0.709 0.781
BRaIn (Qwen) 0.492 0.523 0.411 0.678 0.755

4.4.4 Evaluating BRaIn

Answering RQ1 - Performance of BRaIn

We evaluate the performance of BRaIn using Mean Average Precision (MAP), Mean

Reciprocal Rank (MRR), and HIT@K against top 1, 5, and 10 results. Table 4.4

summarizes our performance details.

From Table 4.4, we see that our proposed technique performs well in detecting

the software bugs. BRaIn, powered by Mistral exhibits strong performance, with a

Mean Average Precision (MAP) of 0.537. This indicates BRaIn’s ability to rank the

relevant documents (a.k.a., buggy source documents) higher than the irrelevant ones.

Our technique achieves a Mean Reciprocal Rank (MRR) of 0.570 suggesting that

the first relevant document is found within the top two positions. BRaIn (Mistral)’s

HIT@1 score of 0.469 shows that, for nearly 47% of bug reports, the most relevant

document appears at the top position. BRaIn (Mistral) also performs well in HIT@5

and HIT@10, with approximately 71% and 78% of bug reports having at least one

relevant buggy document found within the top 5 and top 10 positions, respectively.

BRaIn (LLaMA) delivers nearly comparable results to BRaIn (Mistral), trailing by

1.9% in HIT@10. Although BRaIn (Qwen) demonstrates decent performance, it

lags behind both BRaIn (Mistral) and BRaIn (LLaMA) in all metrics. It achieves

MAP and MRR scores of 0.492 and 0.523, which are about 9.1% lower than BRaIn

(Mistral)’s best performance in each metric.

According to our investigation, some bugs trigger changes to a single document

78

Table 4.5: Performance of BRaIn against multi-document bugs

Changed
Documents

Bug Report
Count

Elasticsearch (ES) LLaMA
MAP MRR HIT@10 MAP MRR HIT@10

1 1,949 0.474 0.474 0.690 0.535 0.535 0.726
2 1,436 0.528 0.573 0.767 0.577 0.628 0.801
3 525 0.462 0.518 0.743 0.493 0.554 0.781

4≥ 773 0.445 0.501 0.765 0.480 0.551 0.793

Changed
Documents

Bug Report
Count

Mistral Qwen
MAP MRR HIT@10 MAP MRR HIT@10

1 1,949 0.542 0.542 0.739 0.483 0.483 0.712
2 1,436 0.565 0.618 0.820 0.529 0.578 0.792
3 525 0.511 0.573 0.789 0.469 0.528 0.758

4≥ 773 0.492 0.554 0.811 0.461 0.520 0.794

during bug resolution, whereas others trigger changes to multiple documents. We

thus evaluate BRaIn’s performance in localizing bugs that warrant changes across

multiple source documents. Table 4.5 shows the performance of BRaIn, powered by

three different LLMs, in terms of MAP, MRR, and HIT@10. We grouped bugs from

our dataset into four categories based on the number of their changed documents: 1,

2, 3, and 4 or more. Our findings show that BRaIn performs strongest when paired

with Mistral. For the 1,949 bugs requiring changes to a single document, BRaIn

(Mistral) achieves a MAP of 0.542, representing a significant 14.3% improvement over

the baseline counterpart. The improvements extend to other metrics, with a 14.3%

increase in MRR and 7.1% in HIT@10. BRaIn (Mistral) also excels in resolving

bugs that require multiple document changes, achieving improvements of 7.0-10.6%

in MAP, 7.9-10.6% in MRR, and 6.0-6.9% in HIT@10. The other variants of BRaIn

also outperform the Elasticsearch baseline in localizing bugs that require multiple

document changes, achieving improvements of up to 9.2% in MAP, 10.0% in MRR,

and 5.1% in HIT@10.

We also investigate how BRaIn performs in localizing bugs where the bug reports

could be of low quality (Fig. 4.3-a). According to existing literature [127], low-quality

bug reports lack sufficient information and provide queries that cannot retrieve at least

one relevant result within their top 10 positions. In our dataset, we identified 1,101

bug reports that fall into this category. Of these, 581 bug reports (i.e., queries) do not

79

(a) (b)

Figure 4.3: Performance of BRaIn with Low Quality Bug Reports

contain any ground truth within their top 50 results returned by Elasticsearch. These

bug reports were not considered, which leaves us with 520 low-quality bug reports for

our analysis. Our findings demonstrate BRaIn’s promising results even with the low-

quality reports. BRaIn (Mistral) emerges as the top performer, successfully localizing

268 bug reports (51.5% of low-quality bug reports) within the top 10 results. BRaIn

(LLaMA) and BRaIn (Qwen) follow, identifying 225 and 198 reports, respectively.

Notably, all three models identified 130 bugs, with BRaIn (Mistral) uniquely localizing

an additional 70 bugs, followed by BRaIn (LLaMA) and BRaIn (Mistral) with 30

and 23 bugs. We also assess BRaIn’s capability to detect the first relevant document

(a.k.a., buggy source document), where 130 bug reports from above were considered

(Fig. 4.3-b). Interestingly, BRaIn (Qwen) outperformed the other variants in this

metric, localizing 26.9% of the bugs at the top positions, followed by BRaIn (LLAMA)

at 18.5% and BRaIn (Mistral) at 10%. All the findings above suggest BRaIn’s ability

to analyze, enhance, and localize bug reports, even with low-quality reports.

80

RQ1 Summary: BRaIn significantly improves bug localization, particularly

with Mistral, reaching a high MAP score of 0.537. This performance is due to

BRaIn’s effective handling of bug reports with up to ≈11% multiple changed

documents. Moreover, BRaIn demonstrates an impressive performance with

limited information, successfully localizing ≈52% of low-quality bug reports

within the top 10 results where the baseline failed.

Table 4.6: Impact of Query Expansion and Scoring

BRaIn
Components

BRaIn (LLaMA) BRaIn (Mistral) BRaIn (Qwen)
MAP MRR MAP MRR MAP MRR

Expansion +
Reranking 0.534 0.568 0.537 0.571 0.492 0.523

Expansion +
No Reranking 0.498 0.568 0.498 0.569 0.496 0.567

No Expansion +
Reranking 0.518 0.574 0.520 0.573 0.489 0.529

Answering RQ2 - Contribution of Query Expansion and Document

reranking

BRaIn leverages Intelligent Relevant Feedback (IRF) to expand its original query and

rerank the documents. Query expansion can improve bug localization by adding rele-

vant keywords to an original query. Similarly, incorporating contextual understanding

into document scoring can help go beyond just textual and semantic matching during

document ranking. We examine the contribution of these two components (Table 4.6)

to BRaIn’s performance as follows.

To determine the impact of query expansion in isolation, we evaluated BRaIn’s

performance without the reranking component (Table 4.6). Interestingly, all BRaIn

variants achieved similar MAP scores of around 0.49, falling short of optimal perfor-

mance. For example, BRaIn (LLaMA) and BRaIn (Mistral) saw MAP scores decrease

by 7.2% and 7.8%, respectively, while their MRR scores remained relatively stable.

BRaIn (Qwen), on the other hand, showed a 7.8% increase in MRR alongside a slight

improvement in MAP. However, all BRaIn variants outperformed the Elasticsearch

baseline by 10.5-10.9% in MRR and 2.4-2.9% in MAP.

81

In contrast, when reranking was applied isolately, MAP scores for BRaIn (LLaMA),

BRaIn (Mistral), and BRaIn (Qwen) dropped by 3.0%, 3.2%, and 6.1%, respectively,

while their MRR scores remained consistent. Despite these decreases, all variants

showed improvements of 3.1-11% in MRR and 1.0-7.1% in MAP over the Elastic-

search baseline.

These findings show how Intelligent Relevance Feedback improves query expansion

and reranking. However, they also underscore the importance of the synergy between

these components for optimal performance.

RQ2 Summary: Query expansion and reranking individually decrease MAP

and MRR by 3.0-7.8%, yet both improve bug localization performance over

the baseline by 2.4-11% in these metrics. Their individual results highlight the

contribution of Intelligent Relevance Feedback and underscore the importance

of a synergistic combination in BRaIn.

Table 4.7: Comparison Between BRaIn and Baseline Techniques

(a) Comparison with Non-ML Baselines

Metrics
Traditional IR Relevance Feedback

Elasticsearch BLUiR Blizzard Rocchio Sysman-SCP BRaIn

MAP 0.484 0.450 0.506 0.489 0.472 0.537
MRR 0.513 0.471 0.536 0.558 0.541 0.571

HIT@10 0.732 0.696 0.758 0.765 0.753 0.781

(b) Comparison with ML Baselines

Metrics
Machine Learning

DNNLOC RLocator NextBug BRaIn

MAP 0.283 0.488 0.469 0.531
MRR 0.296 0.561 0.540 0.564

HIT@10 0.518 0.735 0.743 0.771

Answering RQ3 - Comparison with Basline Techniques

To place our work in the literature, we compare BRaIn with relevant baseline tech-

niques in terms of their MAP, MRR, and HIT@10. Given our methodology, we choose

two types of baseline techniques – IR methods [68,129,136] and deep learning based

82

methods [29, 92, 180]. For comparison with baselines, we use BRaIn (Mistral) in our

experiments since it is the best-performing variant of BRaIn.

To replicate the traditional IR-based bug localization with Elasticsearch base-

line, we index all source documents of a repository and use bug reports (title +

description) as queries. These queries are executed with Elasticsearch [6], which

retrieves relevant documents using the BM25 algorithm [133] and Boolean queries,

with default parameters for k and b. Other traditional approaches from literature–

BLUiR [136] and Blizzard [129]– use structured information from bug reports and

source code for bug localization. BLUiR calculates suspiciousness scores using class

names, method names, variable names, comments, and bug report elements (title,

description), combining multiple searches into an overall score. Blizzard categorizes

bug reports into three types and constructs text graphs from these reports to gener-

ate queries and retrieve relevant buggy source documents. For both approaches, we

employ Apache Lucene [57] for retrieval. We replicated these methods by adapting

them from Bench4BL repository [96] and Blizzard’s replication package [3] from the

authors. We compare BRaIn with these established IR-based techniques to validate

our technique and place it in the literature.

Relevance feedback-based techniques like Rocchio [42] and the Spatial Code Prox-

imity (SCP) model [68] aim to enhance bug localization by refining queries based on

the results of initial searches. Rocchio is a widely-used relevance feedback technique

for information retrieval [42]. We leverage relevance feedback to reformulate queries

and Apache Lucene to execute the queries and retrieve the documents. Our refor-

mulated queries were optimized using α, β, and γ parameters [42]. Similarly, we

implemented Sisman et al.’s SCP model [68] to reformulate queries based on term

proximity within source code. It prioritizes terms that frequently co-occur within

the same method or class, using the best parameters w, x, and y suggested by the

authors. We compare these techniques to our approach to highlight the importance

of contextual understanding during relevance feedback of search queries.

Since Machine Learning (ML) techniques can capture complex patterns in data us-

ing non-linear relationships, we compare BRaIn against three ML-based techniques–

DNNLOC [92], NextBug [180], and RLocator [29]. DNNLOC combines multiple

83

features— rVSM score [84] for bug report-source code similarity, class name similar-

ity, collaborative filtering, and bug report recency and frequency—and uses a neu-

ral network to predict suspiciousness scores to rank documents. NextBug employs

Word2Vec [107] embeddings to capture semantic relations between bug reports and

source code and thus to localize the buggy documents. In our experiments, we substi-

tuted Word2Vec with CodeT5 embeddings [168] to capture more nuanced text-level

semantic associations, as opposed to token-level. RLocator is a recent deep-learning

technique that employs a reinforcement learning model, framed as a Markov Deci-

sion Process, to optimize ranking of buggy documents. We replicated DNNLOC and

NextBug by following the respective authors’ approaches and replicated RLocator us-

ing the authors’ provided replication package on Zenodo [12]. To ensure consistency

with the authors’ specifications, we replicated the methods using cross-validation.

Table 4.7-a summarizes our comparison details with the baseline techniques. Among

traditional IR-based approaches, Blizzard achieves a MAP score of 0.506, while Elas-

ticsearch (ES) and BLUiR scores are 0.484 and 0.450. BRaIn outperforms them with

a MAP of 0.537, achieving a maximum improvement of 19.3% over these techniques.

Similarly, BRaIn achieves notable gains in MRR and HIT@10, with increases of up

to 17.5% and 12.2%. Among the IR based approaches that leverage relevance feed-

back, Rocchio’s algorithm achieves a MAP of 0.489, slightly above the baseline, while

Sysman-SCP falls short by 2.5%. BRaIn again leads here with the improvements

in MAP, MRR, and HIT@10 of 13.8%, 5.5%, and 3.7%, respectively. These results

underscore the advantages of Intelligent Relevance Feedback, which uses contextual

understanding over traditional techniques based on textual relevance for bug local-

ization.

As shown in 4.7-b, BRaIn also outperforms the machine learning techniques that

require training. We evaluated both BRaIn and the baseline techniques on the test

set only to ensure a fair comparison. It should be noted that old bug reports and their

corresponding code were used for training and the recent bugs and their corresponding

code were used for testing. DNNLOC performs significantly lower with a MAP of

0.283, 87.6% lower than BRaIn’s optimal score of 0.531. In comparison, RLocator

and NextBug achieve MAP scores of 0.488 and 0.469, with BRaIn outperforming

them by 8.8% and 13.2%, respectively. Similar improvements are observed for other

84

(a) Full Dataset (4,683 Bug Beports)

(b) Low Quality Bug Reports (1,101 Bug Reports)

Figure 4.4: Rank Improvement: BRaIn vs Blizzard

metrics, with BRaIn showing 4.4-89.5% improvements in MRR and 3.7-48.8% in

HIT@10. Such performance underscores the superiority of BRaIn’s performance with

Intelligent Relevance Feedback (IRF) compared to baseline techniques.

Finding the first buggy document is very important during bug localization [68].

We further investigate how BRaIn performs in such a case. We chose Blizzard for this

investigation as it is the best-performing model against BRaIn in our experiments.

Fig. 4.4-a compares BRaIn and Blizzard by analyzing the difference in ranks for each

query within the top 10 results. A positive value indicates that BRaIn found the

first ground truth at a better rank than Blizzard, while a negative value suggests

the opposite. For 122 bug reports, the large difference of 432 indicates that BRaIn

85

Table 4.8: Statistical Test: BRaIn vs. Blizzard

Evaluation Point p-value Effect Size (Cliff’s δ)

Top-1 0.0023 ** Medium (0.41)
Top-5 0.0015 ** Large (0.66)
Top-10 0.0008 *** Large (0.82)

*=statistical significance

identified the first buggy documents more often than Blizzard. In contrast, Blizzard

only outperformed BRaIn for 4 bug reports. For the set of 2,546 bug reports, there are

two distinct possibilities: Either (a) the rank difference between the two techniques

was 0, or (b) neither technique identified a buggy document within the top-10 results.

We extend our analysis to the 1,101 low-quality bug reports discussed in RQ1. Here

we also see BRaIn’s dominance in rank improvement over Blizzard for 80.34% low-

quality bug reports (Fig. 4.4-b). These results strongly indicate the superiority

of our approach. To further validate our findings against Blizzard, we conducted

non-parametric statistical tests –Mann-Whitney Wilcoxon and Cliff’s δ [17]– and

compared BRaIn to Blizzard in identifying the first buggy document on the entire

dataset. The tests in Table 4.8 show p−values < 0.05 for the top-1, 5, and 10 results,

with medium to large effect sizes (i.e., 0.41 ≤ δ ≤ 0.82). Thus, it confirms BRaIn’s

consistent ability to detect the first buggy document more effectively than its closest

competitor.

RQ3 Summary: BRaIn outperforms traditional, relevance feedback-based,

and ML-based baseline techniques, achieving an 87.6% improvement in MAP.

This demonstrates BRaIn’s ability to localize relevant buggy documents at the

top positions using Intelligent Relevance Feedback (IRF), surpassing relevance

feedback-based techniques by 3.7–13.8% across various metrics. Statistical sig-

nificance tests further confirm BRaIn’s superiority.

86

4.5 Related Work

4.5.1 IR based Bug Localization

Bug localization techniques can broadly be classified into two main groups: spectra-

based and information retrieval (IR)-based approaches [163]. Spectra-based methods

use program execution traces and test methods to localize bugs, making them complex

and expensive [110, 162]. In contrast, IR-based techniques rely on textual overlap

between bug reports and source code to localize the bugs.

Traditional IR-based methods bug localization leveraging the vector space model

(VSM) [95], have been enhanced by integrating additional contexts, such as bug re-

port history, code modifications, and version history [135, 143, 172]. For instance,

Saha et al. [136] leverage bug report and source code structures, capture eight com-

ponents from the code and bug reports, and perform eight pairwise searches using

a sophisticated retrieval technique, Indri [148]. On the other hand, BugLocator [84]

combines a modified VSM (rVSM [84]) score with previous bug fix history to im-

prove bug localization. AmaLgam [164] integrates BLUiR, BugLocator, and version

history to better detect buggy documents. AmaLgam+ [165] further incorporates

stack traces and bug reporter history, refining bug localization across five ranking

components. While advanced, computationally expensive methodologies such as LSI

or LDA [84,121] are available, their bug localization effectiveness is similar to that of

more basic methods [96].

In our work, we use a textual similarity-based retrieval with BM25 in Elasticsearch.

However, it was complemented by contextual understanding of bugs and Intelligent

Relevance Feedback, leveraging the capabilities of LLMs.

4.5.2 Query Reformulation

Poorly constructed queries from software bug reports can significantly hinder IR-

based bug localization [109, 127]. To tackle this issue, researchers have developed

query reformulation techniques that can improve search queries by incorporating bet-

ter terms or eliminating unnecessary ones. For instance, Refoqus [68] uses query

characteristics and machine learning to recommend strategies like query reduction or

expansion for a given query. Graph-based methods analyze semantic and syntactic

87

relationships within bug reports to identify key terms. Rahman and Roy [129] create

text graphs to collect important terms based on three different bug types to improve

query reformulation. The authors later demonstrate generating optimal queries in

bug reports by employing Genetic algorithms [127], which iteratively refine queries

based on search results. Gay et al. [68] used Rocchio’s algorithm to improve queries

with developer feedback, while Sisman et al. [144] expanded queries by selecting terms

from the top-ranked documents using Spatial Code Proximity (SCP), without using

any explicit relevance feedback.

These approaches rely on statistical properties or co-occurrence relations to re-

formulate an original query without meaningful knowledge of source code or bug

reports. Our approach digs deeper to select relevant source code by contextually

understanding bug reports to formulate queries for better bug resolution.

4.5.3 Deep Learning for Bug Localization

Recent advancements in deep learning have encouraged its applications in bug lo-

calization. DNNLOC [92], a seminal work on this topic, identifies buggy documents

by learning from multiple text-based features and metadata (e.g., rVSM score [84],

class name similarity, bug report recency). However, its reliance on features like bug

fixing recency can limit its application [84]. A recent technique, FBL-BERT [37] uses

a BERT-based model, ColBERT [82], for document scoring with late interaction.

However, it relies on changesets for resolution, which are difficult to track in large,

fast-changing projects. Another recent technique, RLocator [29], optimizes ranking

metrics in the bug localization process. It formulates bug localization as a Markov

Decision Process (MDP) and employs reinforcement learning (RL) to localize bugs.

Other approaches like TRANP-CNN [76] and CooBa [185] use Convolutional Neural

Networks (CNN) and Graph Convolutional Networks (GCN) to improve cross-project

bug localization. However, these methods may struggle with scalability when han-

dling large volumes of documents.

In contrast, our technique ensures scalability by using a limited set of documents

retrieved via Elasticsearch [6]. By combining efficient IR-based filtering with the

contextual depth of language models, BRaIn accurately ranks buggy documents, im-

proving bug localization.

88

4.6 Threats to Validity

Threats to internal validity concern experimental errors and biases. Replication of

existing baselines poses such a threat. We mitigated this by using replication pack-

ages from the original authors (Blizzard [3], RLocator [12]) and from Bench4BL [96]

(BLUiR [136]). Due to Indri’s obsolescence, we substituted it with Lucene in the

BLUiR replication. On the other hand, we replicated DNNLOC [92], NextBug [180],

and Sysman-SCP [68] adhering strictly to the original authors’ settings and parame-

ters. To minimize bias, we tested on two distinct datasets and found only a negligible

difference compared to baseline performances.

Threats to external validity relate to generalizability. While BRaIn was evaluated

only on Java code, the underlying models (e.g., LLaMa [155]) are designed to adapt

to various programming languages, potentially mitigating this limitation.

Threats to construct validity concern the appropriateness of our evaluation met-

rics. We employed widely used metrics such as Mean Average Precision (MAP),

Mean Reciprocal Rank (MRR), and HIT@K, which were commonly used in existing

literature on bug localization [129, 131, 136] and Information Retrieval studies [71].

Therefore, this choice of metrics minimizes threats to construct validity.

Finally, we used 20 bug reports from our dataset to optimize prompts with

LLaMA. Since they are part of our experimental dataset, it could introduce bias.

We repeated a limited experiment and found similar performance to the reported

ones in the paper. Thus, any relevant threat of bias is minimal.

4.7 Summary

To summarize, we incorporate Intelligent Relevance Feedback into IR methods and

leverage deep contextual understanding of large language models (LLMs) to support

bug localization. Our evaluation using three performance metrics—MAP, MRR, and

HIT@K—demonstrated significant improvements over baseline methods, achieving

the margins of 87.6%, 89.5%, and 48.8%, respectively. Additionally, BRaIn effectively

localized bugs involving multiple source documents, with improvements ranging from

6.0% to 10.6% across various metrics. Notably, it also demonstrated the ability

to handle low-quality bug reports, outperforming the baseline textual retrieval by

89

51.5%. These results highlight the potential of Intelligent Relevance Feedback (IRF)

in significantly advancing bug localization efforts.

Chapter 5

Coclusion and Future Works

5.1 Conclusion

Software bugs consume valuable development effort and time, and cause significant

financial losses. Their effective, timely resolution has been a major focus, with re-

searchers working on solutions for decades. Unfortunately, existing tools often fail to

capture the contextual variability of bug reports or source code and struggle to local-

ize bugs efficiently. In this RAD report, we conduct two complementary studies and

propose novel methods that leverage contextual understanding from Large Language

Models to support bug localization. Our first work incorporates the reasoning capa-

bilities of Large Language Models (LLMs) into traditional Information Retrieval (IR)

methods, refines search queries, and reranks search results to improve bug localiza-

tion. We evaluate our technique – IQLoc – using three widely accepted metrics: Mean

Average Precision (MAP), Mean Reciprocal Rank (MRR), and HIT@K. Across all

measures, IQLoc consistently outperformed existing techniques, with improvements

of up to 58.52% and 60.59% in MAP, 61.49% and 64.58% in MRR, and 69.88% and

100.90% in HIT@K for test bug reports with random and time-wise splits, respec-

tively. Our second work employs novel Intelligent Relevance Feedback (IRF) into IR

methods to support bug localization. Using the contextual understanding of LLM,

our technique – BRaIn – captures intelligent feedback against its queries and uses

the enhanced queries in localizing bugs. We evaluate BRaIn using three established

metrics and observe improvements of 87.6%, 89.5%, and 48.8% in MAP, MRR, and

HIT@K, respectively. Additionally, BRaIn successfully localizes approximately 52%

of bugs that baseline techniques fail to identify, demonstrating its benefits and strong

potential for localizing software bugs.

90

91

5.2 Future Work

Our work has inspired several directions for future work. In the following section, we

outline several of those key directions.

5.2.1 Impact of Large Language Models on Understanding Source Code

LLMs have demonstrated great potential for effectively understanding both text and

code. However, they are far from perfect, and their existing capabilities also might

not have been leveraged well. Thus, we would like to explore the following problems.

• Structural representations for code like Data Flow Graphs (DFGs), Control

Flow Graphs (CFGs), and Program Dependency Graphs (PDGs) can capture

important relationships between variables, program flow, and code dependencies

[50, 116, 183]. Incorporating these structures—along with graph-based neural

models such as Graph Attention Networks (GAT) [160] could help LLMs better

understand how different parts of a program interact to better capture the

semantics and intents of the code.

• Developers use various (e.g., camelCase, snake case [38, 39]) and often incon-

sistent naming conventions [14, 43, 144] for identifiers in source code. LLMs

tokenize texts using techniques like Byte Pair Encoding (BPE) or Sentence-

Piece [89, 139], which split identifiers in different ways. For example, Googles

T5 [125] language model splits source code identifer sendHTTPRequest into five

tokens (i.e., send, HT, TP, Re, and quest). While a developer can infer the

purpose of the identifier from the name, this type of splitting can hinder the

semantic understanding of a code language model. The effects of such subword

tokenization on bug localization remain underexplored and deserve further in-

vestigation.

In our first study, we fine-tuned a CodeBERT model for bug localization. As a

next step, we aim to explore how semantic understanding of the large language models

can be influenced with structural representation or tokenization of code during bug

localization.

92

5.2.2 Agentic Bug Localization

With the advancement of LLMs, agent-based computing [179] has been recognized as

a viable choice for solving complex tasks in an adaptive and efficient manner, allowing

autonomous decision-making. We envision a multi-agent system for bug localization,

where specialized agents with distinct capabilities will collaborate to address different

aspects of the problem.

• In our first study, we observed that bug reports written purely in natural lan-

guage struggle in localizing bugs. However, in our second study, we found that

such reports improved significantly when relevance feedback from the language

model was incorporated. This suggests the importance of designing agents that

specialize in handling different types of bug reports. For instance, one agent

could handle natural language-heavy bug reports, while another focuses on ones

with stack traces or program artifacts. Building on Blizzard [129], a traditional

approach addressing different types of bug reports, we aim to explore agent-

based solution for bug localization as part of future work.

• Bug reports often contain acronyms, abbreviations, or unrelated texts that are

not helpful for localization [112,127]. An agent could be responsible for identi-

fying and filtering out irrelevant texts while expanding common acronyms and

abbreviations to their full forms. Previous work has shown promising results

in explaining and expanding terms in duplicate bug report detection [112]. In-

corporating such techniques would improve the clarity and effectiveness of the

subsequent queries generated from the report, ensuring that the system better

understands the report’s intent.

• Bug reports are often ambiguous [127], making bug localization and resolution

more challenging. To address this, a separate agent could assess the ambiguity

of certain bug reports and generate multiple self-queries [48,104] and generative

queries [166]. This would allow bug localization tools to explore different aspects

of bug reports. Other agents could then collaboratively refine these focused

queries to enhance localization performance.

• To adapt across different software domains and projects, one or more agents

93

could be designed to learn from available software documentation (e.g., API

references, READMEs) and, from human feedback (e.g., developer input, valida-

tion of retrieved results). This would enable the system to understand project-

specific terminology, structures, and conventions for better bug localization.

Bibliography

[1] Beautiful soup documentation. https://beautiful-soup-4.readthedocs.

io/en/latest/.

[2] Blizzard replication package. https://github.com/masud-technope/

BLIZZARD.

[3] Blizzard replication package. https://github.com/masud-technope/

BLIZZARD.

[4] The cost of poor quality software. https://www.synopsys.

com/software-integrity/resources/analyst-reports/

cost-poor-quality-software.html.

[5] diff-tool — pypi.org. https://pypi.org/project/diff-tool/.

[6] Elasticsearch. https://www.elastic.co/guide/en/elasticsearch/

reference/current/.

[7] Javalang: Pure python java parser and tools. https://github.com/c2nes/

javalang.

[8] Mariner 1 — science.nasa.gov. https://science.nasa.gov/mission/

mariner-1/.

[9] Prompting: how to guides.

[10] Rank-BM25. https://pypi.org/project/rank-bm25/. Accessed: May 2024.

[11] Rlocator: Reinforcement learning for bug localization, May 2024.

[12] Rlocator replication. https://doi.org/10.5281/zenodo.11265302, July
2024.

[13] Muhammad Bello Aliyu. Efficiency of boolean search strings for information
retrieval. American Journal of Engineering Research (AJER), 6(11):216–222,
2017.

[14] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):1–37, 2018.

[15] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. arXiv preprint
arXiv:1901.09069, 2019.

94

https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://github.com/masud-technope/BLIZZARD
https://github.com/masud-technope/BLIZZARD
https://github.com/masud-technope/BLIZZARD
https://github.com/masud-technope/BLIZZARD
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html
https://pypi.org/project/diff-tool/
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://science.nasa.gov/mission/mariner-1/
https://science.nasa.gov/mission/mariner-1/
https://pypi.org/project/rank-bm25/
https://doi.org/10.5281/zenodo.11265302

95

[16] First Author and Second Author. Open-llm-leaderboard: From multi-
choice to open-style questions for large language models. arXiv preprint
arXiv:2406.07545, 2024.

[17] Tyler Barnes, Scott C. Moore, and Katerine Osatuke. Testing Significance
Tests: A Simulation with Cliff’s Delta, t-tests, and Mann-Whitney U. National
Center for Organizational Development, Department of Veteran Affairs, 2018.

[18] Tyler Barnes, Scott C Moore, and Katerine Osatuke. Testing significance tests:
A simulation with cliff’s delta, t-tests, and mann-whitney u. National Center
for Organizational Development, Department of Veteran Affairs, 2018.

[19] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, 2003.

[20] Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl,
and Martin Jaggi. Simple unsupervised keyphrase extraction using sentence
embeddings. arXiv preprint arXiv:1801.04470, 2018.

[21] David B Bracewell, Fuji Ren, and Shingo Kuriowa. Multilingual single docu-
ment keyword extraction for information retrieval. In 2005 international confer-
ence on natural language processing and knowledge engineering, pages 517–522.
IEEE, 2005.

[22] Stephen Brade, Bryan Wang, Mauricio Sousa, Sageev Oore, and Tovi Grossman.
Promptify: Text-to-image generation through interactive prompt exploration
with large language models. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology, pages 1–14, 2023.

[23] Gianni Brauwers and Flavius Frasincar. A general survey on attention mecha-
nisms in deep learning. IEEE Transactions on Knowledge and Data Engineer-
ing, 35(4):3279–3298, 2021.

[24] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[25] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellen-
bogen. Reversible debugging software. Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep, 229, 2013.

[26] Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen,
and Hao Zhong. Bugpecker: Locating faulty methods with deep learning on re-
vision graphs. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 1214–1218, 2020.

96

[27] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking
for reordering documents and producing summaries. In Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 335–336, 1998.

[28] Laura Carnevali. Evaluation Measures in Information Retrieval. https://www.
pinecone.io/learn/offline-evaluation/.

[29] Partha Chakraborty, Mahmoud Alfadel, and Meiyappan Nagappan. Rlocator:
Reinforcement learning for bug localization. IEEE Transactions on Software
Engineering, 2024.

[30] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using observed
behavior to reformulate queries during text retrieval-based bug localization. In
2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 376–387. IEEE, 2017.

[31] Oscar Chaparro and Andrian Marcus. On the reduction of verbose queries in
text retrieval based software maintenance. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, pages 716–718, 2016.

[32] An Ran Chen, Tse-Hsun Chen, and Shaowei Wang. Pathidea: Improving infor-
mation retrieval-based bug localization by re-constructing execution paths using
logs. IEEE Transactions on Software Engineering, 48(8):2905–2919, 2021.

[33] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Un-
leashing the potential of prompt engineering in large language models: a com-
prehensive review. arXiv preprint arXiv:2310.14735, 2023.

[34] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
arXiv preprint arXiv:1603.02754, 2016.

[35] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[36] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555, 2014.

[37] Agnieszka Ciborowska and Kostadin Damevski. Fast changeset-based bug lo-
calization with bert. In Proceedings of the 44th International Conference on
Software Engineering, pages 946–957, 2022.

[38] Wikipedia contributors. Camel case. https://en.wikipedia.org/wiki/

Camel_case, 2023. Accessed: 2024-04-03.

https://www.pinecone.io/learn/offline-evaluation/
https://www.pinecone.io/learn/offline-evaluation/
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

97

[39] Wikipedia contributors. Snake case. https://en.wikipedia.org/wiki/

Snake_case, 2023. Accessed: 2024-04-03.

[40] Atlassian Corporation. Jira REST API Documentation. Atlassian, 2025. Ac-
cessed: 2025-04-06.

[41] Forbes Technology Council. Costly code: The price of software errors, 2023.
Accessed: 2024-08-04.

[42] Ronan Cummins, Natural Language, and Information Processing (NLIP)
Group. Lecture 7: Relevance feedback and query expansion, 2017.

[43] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Soft-
ware Quality Journal, 14:261–282, 2006.

[44] Hervé Déjean, Stéphane Clinchant, and Thibault Formal. A thorough com-
parison of cross-encoders and llms for reranking splade. arXiv preprint
arXiv:2403.10407, 2024.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[46] DevOps. Survey: Fixing bugs stealing time from development, 2024. Accessed:
2024-08-04.

[47] Yangruibo Ding, Jinjun Peng, Marcus J Min, Gail Kaiser, Junfeng Yang, and
Baishakhi Ray. Semcoder: Training code language models with comprehensive
semantics. arXiv preprint arXiv:2406.01006, 2024.

[48] LangChain Documentation. How to: Self-query with langchain, 2025. Accessed:
2025-04-03.

[49] Paul Dourish. What we talk about when we talk about context. Personal and
ubiquitous computing, 8:19–30, 2004.

[50] Yali Du, Ying Li, Yi-Fan Ma, and Ming Li. Capturing the context-aware code
change via dynamic control flow graph for commit message generation. Machine
Learning, 114(4):94, 2025.

[51] Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shang-
guan, Ke Li, Jinxi Guo, Wenhan Xiong, Jay Mahadeokar, Ozlem Kalinli, et al.
Prompting large language models with speech recognition abilities. In ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 13351–13355. IEEE, 2024.

[52] Federal Communications Commission. February 22, 2024 AT&T Mobility Net-
work Outage: Report and Findings. Technical report, Federal Communications
Commission, 2024.

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case

98

[53] Sidong Feng and Chunyang Chen. Prompting is all you need: Automated
android bug replay with large language models. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, pages 1–13,
2024.

[54] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

[55] Christoph Fischer. Javaparser, 2019.

[56] Consortium for IT Software Quality. Cpsq 2020 report. Technical report, IT-
CISQ, 2020. Accessed: 2024-08-04.

[57] The Apache Software Foundation. Apache lucene. 2021.

[58] Michael Franke and Judith Degen. The softmax function: Properties, motiva-
tion, and interpretation, 2023.

[59] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Ac-
curate post-training quantization for generative pre-trained transformers. arXiv
preprint arXiv:2210.17323, 2022.

[60] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-
mais. The vocabulary problem in human-system communication. Communica-
tions of the ACM, 30(11):964–971, 1987.

[61] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the use
of relevance feedback in ir-based concept location. In 2009 IEEE International
Conference on Software Maintenance, pages 351–360, 2009.

[62] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the use
of relevance feedback in ir-based concept location. In 2009 IEEE international
conference on software maintenance, pages 351–360. IEEE, 2009.

[63] Benyamin Ghojogh and Ali Ghodsi. Recurrent neural networks and long short-
term memory networks: Tutorial and survey, 2023.

[64] Afshin Gholamy, Vladik Kreinovich, and Olga Kosheleva. Why 70/30 or 80/20
relation between training and testing sets: A pedagogical explanation. Interna-
tional Journal of Intelligent Technologies and Applied Statistics, 11(2):105–111,
2018.

[65] Afshin Gholamy, Vladik Kreinovich, and Olga Kosheleva. Why 70/30 or 80/20
relation between training and testing sets: A pedagogical explanation. Int. J.
Intell. Technol. Appl. Stat, 11(2):105–111, 2018.

99

[66] Maarten Grootendorst. Keybert: Minimal keyword extraction with bert, 2020.
Accessed: 2025-03-12.

[67] Qiuhan Gu. Llm-based code generation method for golang compiler testing. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 2201–2203,
2023.

[68] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lu-
cia, and Tim Menzies. Automatic query reformulations for text retrieval in
software engineering. In 2013 35th International Conference on Software Engi-
neering (ICSE), pages 842–851. IEEE, 2013.

[69] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lu-
cia, and Tim Menzies. Automatic query reformulations for text retrieval in
software engineering. In 2013 35th International Conference on Software Engi-
neering (ICSE), pages 842–851. IEEE, 2013.

[70] Jiawei Han, Micheline Kamber, and Jian Pei. 2 - getting to know your data.
In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining (Third
Edition), The Morgan Kaufmann Series in Data Management Systems, pages
39–82. Morgan Kaufmann, Boston, third edition edition, 2012.

[71] Donna Harman. Information retrieval evaluation. Morgan & Claypool Publish-
ers, 2011.

[72] Zellig S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[73] Matthew Hennessy. The semantics of programming languages: an elementary
introduction using structural operational semantics. John Wiley & Sons, Inc.,
1990.

[74] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. Learning deep structured semantic models for web search using click-
through data. CIKM ’13, page 2333–2338, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[75] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-
encoders: Transformer architectures and pre-training strategies for fast and
accurate multi-sentence scoring. arXiv preprint arXiv:1905.01969, 2019.

[76] Xuan Huo and Ming Li. Enhancing the unified features to locate buggy files
by exploiting the sequential nature of source code. In IJCAI, pages 1909–1915,
2017.

[77] IEEE. Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84, 1990.

100

[78] Jones, E., Oliphant, T., Peterson, P., et al. Scipy: Open source scientific tools
for python. http://www.scipy.org/, 2001.

[79] V Roshan Joseph. Optimal ratio for data splitting. Statistical Analysis and
Data Mining: The ASA Data Science Journal, 15(4):531–538, 2022.

[80] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-
ment learning: A survey. Journal of artificial intelligence research, 4:237–285,
1996.

[81] Anjan Karmakar and Romain Robbes. What do pre-trained code models know
about code?, 2021.

[82] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Informa-
tion Retrieval, pages 39–48, 2020.

[83] Deniz Kılınç, Fatih Yücalar, Emin Borandağ, and Ersin Aslan. Multi-level
reranking approach for bug localization. Expert Systems, 33(3):286–294, 2016.

[84] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. Where should
we fix this bug? a two-phase recommendation model. IEEE transactions on
software Engineering, 39(11):1597–1610, 2013.

[85] Misoo Kim and Eunseok Lee. A novel approach to automatic query reformu-
lation for ir-based bug localization. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, page 1752–1759, New York, NY,
USA, 2019. Association for Computing Machinery.

[86] Misoo Kim and Eunseok Lee. A novel approach to automatic query reformu-
lation for ir-based bug localization. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 1752–1759, 2019.

[87] Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug
localization: Do they matter? In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering, pages 803–814, 2014.

[88] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. Advances in
Neural Information Processing Systems, pages 1008–1014, 2000.

[89] Taku Kudo and John Richardson. Sentencepiece: A simple and language in-
dependent subword tokenizer and detokenizer for neural text processing. Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 66–71, 2018.

http://www.scipy.org/

101

[90] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient
memory management for large language model serving with pagedattention.
In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles, 2023.

[91] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
Bug localization with combination of deep learning and information retrieval.
In 2017 IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), pages 218–229. IEEE, 2017.

[92] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
Bug localization with combination of deep learning and information retrieval.
In 2017 IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), pages 218–229, 2017.

[93] Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm-a literature
review. In 2019 international conference on machine learning, big data, cloud
and parallel computing (COMITCon), pages 380–384. IEEE, 2019.

[94] Tien-Duy B Le, Richard J Oentaryo, and David Lo. Information retrieval and
spectrum based bug localization: Better together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 579–590,
2015.

[95] D.L. Lee, Huei Chuang, and K. Seamons. Document ranking and the vector-
space model. IEEE Software, 14(2):67–75, 1997.

[96] Jaekwon Lee, Dongsun Kim, Tegawendé F Bissyandé, Woosung Jung, and Yves
Le Traon. Bench4bl: reproducibility study on the performance of ir-based bug
localization. In Proceedings of the 27th ACM SIGSOFT international sympo-
sium on software testing and analysis, pages 61–72, 2018.

[97] Sung-Jick Lee and Han-Joon Kim. Keyword extraction from news corpus using
modified tf-idf. The Journal of Society for e-Business Studies, 14(4):59–73,
2009.

[98] Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun, and
Jungang Xu. Nprf: A neural pseudo relevance feedback framework for ad-hoc
information retrieval, January 2018.

[99] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion:
Enhancing prompt understanding of text-to-image diffusion models with large
language models. arXiv preprint arXiv:2305.13655, 2023.

[100] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. Pre-train, prompt, and predict: A systematic survey of

102

prompting methods in natural language processing. ACM Computing Surveys,
55(9):1–35, 2023.

[101] Yiwei Lu, Shuxia Ye, and Liang Qi. Codetranfix: A neural machine transla-
tion approach for context-aware java program repair with codebert. Applied
Sciences, 15(7):3632, 2025.

[102] Hongyin Luo, Lan Jiang, Yonatan Belinkov, and James Glass. Improving neural
language models by segmenting, attending, and predicting the future. arXiv
preprint arXiv:1906.01702, 2019.

[103] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[104] Yuetian Mao, Chengcheng Wan, Yuze Jiang, and Xiaodong Gu. Self-supervised
query reformulation for code search. ESEC/FSE 2023, page 363–374, New York,
NY, USA, 2023. Association for Computing Machinery.

[105] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of
neural language modeling at multiple scales, 2018.

[106] Bertalan Meskó. Prompt engineering as an important emerging skill for medical
professionals: tutorial. Journal of medical Internet research, 25:e50638, 2023.

[107] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality,
2013.

[108] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 conference
of the north american chapter of the association for computational linguistics:
Human language technologies, pages 746–751, 2013.

[109] Chris Mills, Esteban Parra, Jevgenija Pantiuchina, Gabriele Bavota, and Sonia
Haiduc. On the relationship between bug reports and queries for text retrieval-
based bug localization. Empirical Software Engineering, 25:3086–3127, 2020.

[110] Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. On
the use of stack traces to improve text retrieval-based bug localization. In 2014
IEEE International Conference on Software Maintenance and Evolution, pages
151–160, 2014.

[111] Katsuhisa Morita, Tadahaya Mizuno, and Hiroyuki Kusuhara. Investigation of
a data split strategy involving the time axis in adverse event prediction using
machine learning. Journal of Chemical Information and Modeling, 62(17):3982–
3992, 2022.

103

[112] Usmi Mukherjee and Mohammad Masudur Rahman. Understanding the impact
of domain term explanation on duplicate bug report detection. arXiv preprint
arXiv:2503.18832, 2025.

[113] MD Muktadir, Golam. A brief history of prompt: Leveraging language models.
(through advanced prompting), September 2023.

[114] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar Al-Kofahi, Hung Viet Nguyen,
and Tien N Nguyen. A topic-based approach for narrowing the search space of
buggy files from a bug report. In 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011), pages 263–272. IEEE,
2011.

[115] Devon H O’Dell. The debugging mindset: Understanding the psychology of
learning strategies leads to effective problem-solving skills. Queue, 15(1):71–90,
2017.

[116] Department of Computer Science. Dependence and Data Flow Models. Uni-
versity of Toronto, 2016. Chapter 6: Control Flow Graph and State Machine
Models.

[117] Bhawna Paliwal, Deepak Saini, Mudit Dhawan, Siddarth Asokan, Nagarajan
Natarajan, Surbhi Aggarwal, Pankaj Malhotra, Jian Jiao, and Manik Varma.
Cross-jem: Accurate and efficient cross-encoders for short-text ranking tasks.
arXiv preprint arXiv:2409.09795, 2024.

[118] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks, 2013.

[119] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar, 2014. Association for Computational Linguistics.

[120] Sebastian Pier. Here’s what caused the AT&T outage that blocked 92 million
phone calls (plus 25,000 attempts to reach 911). PhoneArena, 2024.

[121] Denys Poshyvanyk, Yann-Gal Guneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval. IEEE Transactions on
Software Engineering, 33(6):420–432, 2007.

[122] Ronak Pradeep, Yuqi Liu, Xinyu Zhang, Yilin Li, Andrew Yates, and Jimmy
Lin. Squeezing water from a stone: a bag of tricks for further improving cross-
encoder effectiveness for reranking. In European Conference on Information
Retrieval, pages 655–670. Springer, 2022.

104

[123] Binhang Qi, Hailong Sun, Wei Yuan, Hongyu Zhang, and Xiangxin Meng.
Dreamloc: A deep relevance matching-based framework for bug localization.
IEEE Transactions on Reliability, 71(1):235–249, 2022.

[124] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. OpenAI, 2018.

[125] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems
(NeurIPS 2019), 2019.

[126] M. M. Rahman and C. K. Roy. STRICT: Information Retrieval Based Search
Term Identification for Concept Location. In Proc. SANER, pages 79–90, 2017.

[127] Mohammad Masudur Rahman, Foutse Khomh, Shamima Yeasmin, and Chan-
chal K Roy. The forgotten role of search queries in ir-based bug localization:
an empirical study. Empirical Software Engineering, 26(6):116, 2021.

[128] Mohammad Masudur Rahman and Chanchal K Roy. Improved query reformu-
lation for concept location using coderank and document structures. In 2017
32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 428–439. IEEE, 2017.

[129] Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-based bug
localization with context-aware query reformulation. In Proceedings of the 2018
26th ACM joint meeting on European software engineering conference and sym-
posium on the foundations of software engineering, pages 621–632, 2018.

[130] Mohammad Masudur Rahman and Chanchal K Roy. A systematic review of
automated query reformulations in source code search. ACM Transactions on
Software Engineering and Methodology, 2021.

[131] Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. Rack: Au-
tomatic api recommendation using crowdsourced knowledge. pages 349–359.
Institute of Electrical and Electronics Engineers (IEEE), 5 2016.

[132] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework:
Bm25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, April 2009.

[133] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, Mike Gatford, et al. Okapi at trec-3. Nist Special Publication Sp,
109:109, 1995.

[134] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

105

[135] Ripon K Saha, Julia Lawall, Sarfraz Khurshid, and Dewayne E Perry. On the
effectiveness of information retrieval based bug localization for c programs. In
2014 IEEE international conference on software maintenance and evolution,
pages 161–170. IEEE, 2014.

[136] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry.
Improving bug localization using structured information retrieval. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 345–355. IEEE, 2013.

[137] Tobias Schnabel and Jennifer Neville. Prompts as programs: A structure-
aware approach to efficient compile-time prompt optimization. arXiv preprint
arXiv:2404.02319, 2024.

[138] Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda
Liu, Chenglei Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff,
et al. The prompt report: A systematic survey of prompting techniques. arXiv
preprint arXiv:2406.06608, 2024.

[139] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine transla-
tion of rare words with subword units. Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL), pages 1715–1725, 2016.

[140] David Shepardson. AT&T February wireless outage blocked more than 92 mil-
lion calls, agency says. Reuters, 2024.

[141] Jiho Shin, Clark Tang, Tahmineh Mohati, Maleknaz Nayebi, Song Wang, and
Hadi Hemmati. Prompt engineering or fine tuning: An empirical assessment of
large language models in automated software engineering tasks. arXiv preprint
arXiv:2310.10508, 2023.

[142] Farhad Mortezapour Shiri, Thinagaran Perumal, Norwati Mustapha, and Rai-
hani Mohamed. A comprehensive overview and comparative analysis on deep
learning models: Cnn, rnn, lstm, gru, 2024.

[143] Bunyamin Sisman and Avinash C Kak. Incorporating version histories in infor-
mation retrieval based bug localization. In 2012 9th IEEE working conference
on mining software repositories (MSR), pages 50–59. IEEE, 2012.

[144] Bunyamin Sisman and Avinash C. Kak. Assisting code search with automatic
query reformulation for bug localization. In 2013 10th Working Conference on
Mining Software Repositories (MSR), pages 309–318, 2013.

[145] Anders Søgaard, Sebastian Ebert, Jasmijn Bastings, and Katja Filippova. We
need to talk about random splits. In Paola Merlo, Jorg Tiedemann, and Reut
Tsarfaty, editors, Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pages 1823–1832,
Online, April 2021. Association for Computational Linguistics.

106

[146] Tim Sonnekalb, Bernd Gruner, Clemens-Alexander Brust, and Patrick Mäder.
Generalizability of code clone detection on codebert, 2022.

[147] Venkatesh Srinivasan and Thomas Reps. An improved algorithm for slicing
machine code. ACM SIGPLAN Notices, 51(10):378–393, 2016.

[148] Trevor Strohman, Donald Metzler, Howard R. Turtle, and W. Bruce Croft.
Indri : A language-model based search engine for complex queries (extended
version). 2005.

[149] Yi Sun, Hangping Qiu, Yu Zheng, Zhongwei Wang, and Chaoran Zhang.
Sifrank: a new baseline for unsupervised keyphrase extraction based on pre-
trained language model. IEEE Access, 8:10896–10906, 2020.

[150] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014.

[151] Mistral Team. Mistral: A new approach to language models, 2023.

[152] Qwen Team. Qwen: A high-performance language model, 2023.

[153] MIT Sloan Teaching & Learning Technologies. Effective prompts for ai: The
essentials, September 16 2024.

[154] New York Times. Tech outage grounds flights across u.s., 2024. Accessed:
2024-08-04.

[155] Hugo Touvron, Antoine Bosselut, Kapil Sinha, and et al. Llama: Open and
efficient foundation language models, 2023.

[156] Rishabh Upadhyay, Arian Askari, Gabriella Pasi, and Marco Viviani. Enhanc-
ing documents with multidimensional relevance statements in cross-encoder re-
ranking. arXiv preprint arXiv:2306.10979, 2023.

[157] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. A review on the
long short-term memory model. Artificial Intelligence Review, 53(8):5929–5955,
2020.

[158] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[159] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

107

[160] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[161] Junmei Wang, Min Pan, Tingting He, Xiang Huang, Xueyan Wang, and Xin-
hui Tu. A pseudo-relevance feedback framework combining relevance matching
and semantic matching for information retrieval. Information Processing &
Management, 57(6):102342, 2020.

[162] Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness
of ir-based fault localization techniques. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, page 1–11, New
York, NY, USA, 2015. Association for Computing Machinery.

[163] Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness
of ir-based fault localization techniques. In Proceedings of the 2015 international
symposium on software testing and analysis, pages 1–11, 2015.

[164] Shaowei Wang and David Lo. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceedings of the
22nd International Conference on Program Comprehension, pages 53–63, 2014.

[165] Shaowei Wang and David Lo. Amalgam+: Composing rich information sources
for accurate bug localization. Journal of Software: Evolution and Process,
28(10):921–942, 2016.

[166] Xiao Wang, Sean MacAvaney, Craig Macdonald, and Iadh Ounis. Generative
query reformulation for effective adhoc search, 2023.

[167] Xiao Wang, Craig Macdonald, and Iadh Ounis. Deep reinforced query reformu-
lation for information retrieval. arXiv preprint arXiv:2007.07987, 2020.

[168] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859, 2021.

[169] Albert Webson and Ellie Pavlick. Do prompt-based models really understand
the meaning of their prompts? arXiv preprint arXiv:2109.01247, 2021.

[170] Lian Kit Wee. Here comes the wave of insurance claims for the crowdstrike
outage, July 2024.

[171] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Reinforcement
learning to rank with markov decision process. In Proceedings of the 40th inter-
national ACM SIGIR conference on research and development in information
retrieval, pages 945–948, 2017.

108

[172] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. Locus: Locating bugs from
software changes. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 262–273, 2016.

[173] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

[174] David Weston. Helping our customers through the crowdstrike outage - the
official microsoft blog, July 2024.

[175] Glynn Winskel. The formal semantics of programming languages: an introduc-
tion. MIT press, 1993.

[176] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, and Delangue.
Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

[177] Xi Xiao, Renjie Xiao, Qing Li, Jianhui Lv, Shunyan Cui, and Qixu Liu.
Bugradar: Bug localization by knowledge graph link prediction. Information
and Software Technology, page 107274, 2023.

[178] Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. Improving bug
localization with an enhanced convolutional neural network. In 2017 24th Asia-
Pacific Software Engineering Conference (APSEC), pages 338–347. IEEE, 2017.

[179] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces
enable automated software engineering. Advances in Neural Information Pro-
cessing Systems, 37:50528–50652, 2024.

[180] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. Combining
word embedding with information retrieval to recommend similar bug reports.
In 2016 IEEE 27Th international symposium on software reliability engineering
(ISSRE), pages 127–137. IEEE, 2016.

[181] Klaus Changsun Youm, June Ahn, Jeongho Kim, and Eunseok Lee. Bug local-
ization based on code change histories and bug reports. In 2015 Asia-Pacific
Software Engineering Conference (APSEC), pages 190–197, 2015.

[182] Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. Improving pseudo-
relevance feedback in web information retrieval using web page segmentation.
In Proceedings of the 12th international conference on World Wide Web, pages
11–18, 2003.

[183] Xuejun Zhang, Xia Hou, Xiuming Qiao, and Wenfeng Song. A review of auto-
matic source code summarization. Empirical Software Engineering, 29(6):162,
2024.

109

[184] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng
Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu
Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large
language models, 3 2023.

[185] Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. Cooba: Cross-project bug
localization via adversarial transfer learning. In IJCAI, 2020.

[186] Armin Zirak and Hadi Hemmati. Improving automated program repair with
domain adaptation. ACM Trans. Softw. Eng. Methodol., 33(3), mar 2024.

[187] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen Xu. How
practitioners perceive automated bug report management techniques. IEEE
Transactions on Software Engineering, 46(8):836–862, 2018.

Appendix A

Complimentary Materials

A.1 Replication Packages

• IQLoc: https://github.com/asifsamir/IQLoc

• BRaIn: https://github.com/asifsamir/BRaIn

110

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Related Publications
	Outline of the Report

	Background
	Program Semantics and Context
	Information Retrieval
	Vector Space Model (VSM)
	Indexing
	Document Retrieval

	Word Embedding
	Sequence Modeling
	Recurrent Neural Network
	Long Short-term Memory and Gated Recurrent Unit Models
	Attention Mechanism
	Transformers

	Natural Language Modeling
	Cross-Encoders
	Summary

	Improving IR-based Bug Localization with Semantics-Driven Query Reduction
	Introduction
	Motivational Example
	Methodology
	Fine-tune Cross-Encoder Model
	Corpus Indexing
	Retrieval of Potentially Buggy Source Documents
	Relevance Estimation using Cross-Encoder
	Query Reformulation
	Bug Localization

	Experiment
	Dataset Construction
	Evaluation Metrics
	Evaluting IQLoc

	Related Work
	IR based Bug Localization
	Query Reformulation
	Deep Learning for Bug Localization

	Threats to Validity
	Summary

	Improved IR-based Bug Localization with Intelligent Relevance Feedback
	Introduction
	Motivational Example
	Methodology
	Document Indexing and Retrieval
	Intelligent Relevance Feedback
	Query Expansion
	Bug Localization

	Experiments
	Dataset Construction
	Evaluation Metrics
	Selection of LLM
	Evaluating BRaIn

	Related Work
	IR based Bug Localization
	Query Reformulation
	Deep Learning for Bug Localization

	Threats to Validity
	Summary

	Coclusion and Future Works
	Conclusion
	Future Work
	Impact of Large Language Models on Understanding Source Code
	Agentic Bug Localization

	Bibliography
	Complimentary Materials
	Replication Packages

