
SEARCH TERM IDENTIFICATION FOR CONCEPT LOCATION
LEVERAGING WORD RELATIONS

by

Shiwen Yang

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2024

© Copyright by Shiwen Yang, 2024

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

Acknowledgements . vii

Chapter 1 Introduction . 1

1.1 Motivation and Research Problem . 1

1.2 Contributions . 2

1.3 Outline of the Thesis . 3

Chapter 2 Background . 4

2.1 Embedding . 4

2.2 Cosine Similarity . 4

2.3 Degree of Interest . 5

2.4 Summary . 5

Chapter 3 Methodology . 6

3.1 Construction of the dataset . 6

3.2 Text Preprocessing . 7
3.2.1 Syntactic Segmentation . 7
3.2.2 Term Decomposition . 7
3.2.3 Removal of Nonessential terms and Tokens 8

3.3 Calculation of Term Weights . 8
3.3.1 Statistical Relationship . 9
3.3.2 Syntactic Relationship . 11
3.3.3 Semantic Relationship . 12

3.4 Search Term Ranking and Selection 14

3.5 Parameter Tuning . 17

3.6 Experimental Design . 19

ii

3.6.1 Performance Metrics . 19

3.7 Summary . 21

Chapter 4 Empirical findings . 22

4.1 RQ1: How does each graph help us find effective search terms for
concept location? . 22

4.2 RQ2: How do various combinations of graphs help us find effective
search terms for concept location? . 23
4.2.1 Four-graph combinations . 23
4.2.2 Three-graph combinations . 25
4.2.3 Two-graph combinations . 25
4.2.4 Summary . 25

4.3 RQ3: Can we find optimal weights for various algorithms targeting
search term selection? . 26
4.3.1 Comparison with Baseline Queries 28

4.4 Summary . 29

Chapter 5 Threats to validity . 30

5.1 Internal Validity . 30

5.2 External Validity . 31

Chapter 6 Related work . 32

6.1 TF-IDF . 32

6.2 QUICKAR . 32

6.3 BLIZZARD . 33

6.4 ChatGPT . 34

6.5 Summary . 34

Chapter 7 Conclusion and Future Work 36

7.1 Conclusion . 36

7.2 Future Work . 36

Bibliography . 37

iii

List of Tables

3.1 Subject Systems and Associated Query Counts 6

3.2 An Example Change Request (Issue #: 303705, ECLIPSE.JDT.UI) 7

4.1 Retrieval Performance of Search by Each Algorithm 22

4.2 Retrieval Performance of Graph Combination 24

4.3 Performance of Weighted Graph Combination in Parameter Tuning 27

4.4 Comparison of retrieval performance between STRICT and STRICT++ 27

4.5 Comparison of STRICT++’s Effectiveness with Baseline Queries 28

iv

List of Figures

3.1 Text Graphs of change request in Table 3.2 – (a) using word
co-occurrences, and (b) using syntactic dependencies [25] . . . 9

3.2 SimRank Graph of change request in Table 3.2 using Cosine
Similarity (SIMILARITY THRESHOLD = 0.5) 13

v

Abstract

According to existing surveys, software errors and failures lead to billion-dollar losses

every year. To reduce such losses, software engineers spend about 50% of their time

on correcting software errors and bugs. They often use various traditional techniques

(e.g., regex, code search) and software artifacts (e.g., bug reports) to detect the loca-

tion of a software bug, which is time-consuming and technically challenging. Several

existing approaches attempt to find appropriate search queries from a bug report

(a.k.a., change request), execute them against a search engine, and then detect the

location of a software bug (a.k.a., software concept). STRICT, one of the existing

works, develops two text graphs leveraging the co-occurrence and syntactic relation-

ships of words and attempts to find the search terms from a change request. However,

STRICT overlooks the semantic relationship among the words, which can inform their

importance. In this honours thesis, we extend the STRICT and construct a third text

graph leveraging the semantic relationship among words. Besides two existing algo-

rithms – TextRank and POSRank, we also replicate three existing algorithms for

keyword extraction. We call our solution for keyword selection – STRICT++ – that

automatically suggests relevant search terms for a software change request based on

four graph-based keyword selection algorithms: POSRank, SimRank, Biased Tex-

tRank, and PositionRank. Experiments using 946 change requests from 22 subject

systems demonstrate the superiority of STRICT++. It achieves performance im-

provements, with MAR at 20.78%, MRR at 0.2147, and Top-10 Accuracy at 37.60%,

outperforming the STRICT. It provides better first correct ranks than baseline queries

for 44%–55% of the change requests which is promising. This honours thesis indi-

cates the significance of capturing syntactic relationships between words for effective

keyword extraction. In addition, word similarity, task-specific biases, and position

information also play a small supporting role in the combination of graph-based al-

gorithms.

vi

Acknowledgements

I hereby express my deepest gratitude and appreciation to the following individuals

and groups who have played a significant role in my academic journey at Dalhousie

University.

First and foremost, I extend special thanks to my supervisor, Dr. Masud Rahman,

for his invaluable mentorship and guidance. His helpful suggestions provided a firm

direction for my research. His insightful feedback and constructive criticism were

crucial in shaping my project.

I also wish to express my sincere gratitude to my reader, Dr. Srini Sampalli, for

his time and interest in my work. His participation has been invaluable.

To my parents, I owe an immense debt of gratitude for their unwavering sup-

port, encouragement, and sacrifices throughout my academic journey. Their love and

guidance have been my pillars of strength.

I am also immensely thankful to the members of the RAISE Lab—Sigma Jahan,

Ohiduzzaman Shuvo, Parvez Mahbub, Asif Samir, Riasat Mahbub, Usmi Mukherjee,

Shihui Gao, Callum MacNeil, and Mehil Shah—for their invaluable help and support.

Their expertise and camaraderie have enriched my research experience.

Furthermore, I appreciate Dalhousie University and the Department of Computer

Science for fostering an inspiring academic environment and providing the necessary

resources for my research.

Lastly, I extend my gratitude to my friends for their guidance and support. Their

kindness and encouragement have been invaluable. I am grateful to everyone who

has been part of this journey with me, and I look forward to continuing to learn and

grow with your support.

vii

Chapter 1

Introduction

1.1 Motivation and Research Problem

During software development and maintenance, software engineers need to deal with

many changes or upgrades to their software features. In addition to the changes in

software features, they also tackle many software bugs and failures. According to

existing surveys, software developers spend about 50% of their programming time

dealing with bugs and failures [5]. Locating the bugs in software is an essential step

in software debugging, which could be complicated and time-consuming [17] [22] [35].

Similarly, the identification of the exact source location relevant to a change request

is equally challenging, which is often called concept location in the literature. Soft-

ware engineers often attempt to pick appropriate keywords from a change request

as queries and execute them with a search engine to find the target code. However,

according to previous research findings [9] [16], the success rate of developers selecting

appropriate search terms for change tasks is very low, with an average of less than

15%. Thus, supporting the software engineers with appropriate search keywords from

change requests - remains an open problem worth studying and solving.

STRICT, a novel search term identification technique to support concept location

proposed by Rahman and Roy [25]. STRICT adopts Graph-based Term Weighting

where it represents the unique words as vertices and their relationships as edges in

a graph. In regular texts (e.g., change requests), words enjoy three major types of

relationships, such as statistical (e.g., co-occurrence), syntactic (e.g., grammatical

modification), or semantic (i.e., conceptual relevance) [3]. In STRICT, two text

graphs were constructed based on term co-occurrence, and POS dependence/syntactic

relationships among the words of a change request. They analyze the topological

properties from the graphs and extract the search terms by using two graph-based

term weighting algorithms, TextRank and POSRank.

Analysis of semantic/conceptual relevance between words has been found useful

1

2

in search term selection [24]. Rahman and Roy propose QUICKAR that uses the

co-occurrence to build a word adjacency database from Stack Overflow. Then it

estimates semantic relevance between two words based on their adjacency list from

the database to suggest semantically relevant queries for concept location. That is

their technique attempts to add highly similar words to change requests. However,

adding highly similar keywords might not add any value if the initial query is of poor

quality.

Nowadays, graph-based term weighting has emerged as a solution for search term

selection. However, existing techniques often consider only one or two inter-word

relationships during graph construction, limiting their effectiveness [25] [15] [8]. For

instance, while POSRank may perform well in change requests with strong grammar

word connections, it may struggle in requests with more code structure and a lack

of syntactic relationships. To address this limitation, a combination graph approach

can be employed to mitigate the negative effects. In our research, we explore and

evaluate the multi-graph-based term weighting method leveraging three types of word

relationships for search term selection. We designed three experiments to answer three

research questions, aiming to explore the effectiveness of this approach.

1.2 Contributions

In this thesis, we investigate combinations of five graph-based algorithms and their

weight distribution for search term selection. We proposed a novel algorithm–STRICT++

that combines four graph-based algorithms (POSRank, SimRank, Biased TextRank,

and PositionRank), leveraging three types of inter-word relationships. We conduct

experiments on 946 change requests from 22 systems and observe performance im-

provements over STRICT and baseline queries. The weight distribution of each al-

gorithm underscores the importance of syntactic word relationships, such as POS

dependence, in search term selection, as well as the complementary nature of the

three inter-word relationships.

3

1.3 Outline of the Thesis

We conducted three experiments and answered three research questions to explore the

impact of five graph-based algorithms leveraging three types of word relationships in

keyword selection. This section outlines the different chapters of the thesis.

• Chapter 2 discusses several background concepts (e.g., embedding, cosine simi-

larity, PageRank algorithm) that are required to follow the rest of the thesis.

• Chapter 3 discusses the methodology employed in the study, including the con-

struction of the dataset, text preprocessing, calculation of term weights, search

term ranking and selection, parameter tuning, and experimental design.

• Chapter 4 discusses the empirical findings of three experiments (single graph-

based algorithm, combination of algorithms, and weight distribution of each

algorithm) and answers three research questions.

• Chapter 5 discusses the threats to the validity of our research.

• Chapter 6 discusses the related work.

• Chapter 7 concludes the thesis with some directions for future works.

Chapter 2

Background

This chapter provides the required terminologies and concepts to follow the remaining

of the thesis. We introduce key technologies such as word/sentence embeddings,

cosine similarity, and degree of interest.

2.1 Embedding

Word embeddings are a key technology for converting words into numerical vector

representations. They aim to capture the semantic information of words and encode

them into high-dimensional continuous vectors that are easy to process by machine

learning models. Word2Vec [21] and GloVe [12] are two pre-trained models that have

been used in keyword extraction applications [14] [33].

Sentence embeddings extend the concept of word embeddings and represent an

entire sentence or phrase as a single vector, retaining its overall meaning and context.

In this work, we use “all-mpnet-base-v2” [30], a pre-trained BERT model from the

HuggingFace Model Hub that transforms text into a 768-dimensional dense vector

space.

2.2 Cosine Similarity

Cosine similarity is a commonly used technique to determine textual similarity in

information retrieval. By computing the cosine similarity between word embeddings,

one can directly estimate the semantic relatedness of the corresponding words. The

higher cosine similarity values indicate strong semantic overlap. The resulting value

ranges from zero (i.e., completely dissimilar) to one (i.e., completely similar). The

formula to calculate the cosine similarity between two vectorsis [10] is as follows:

Cos(x, y) =
x · y
∥x∥∥y∥

(2.1)

where,

4

5

• x · y is the product (dot) of the vectors ‘x’ and ‘y’.

• ∥x∥ and ∥y∥ are the magnitudes of the vectors ‘x’ and ‘y’.

• ∥x∥∥y∥ is a multiplication of two magnitudes of the vectors ‘x’ and ‘y’.

We use cosine similarity to calculate the similarity between words during the graph

construction of SimRank and Biased TextRank (section 3.3.3).

2.3 Degree of Interest

When assessing multiple term weighting algorithms, each algorithm offers a unique

perspective on term importance. Therefore, normalization is essential to mitigate

bias when performing mathematical operations among these graph-based algorithm

scores. The normalization formula is as follows:

DOIi = 1− ni

N
(2.2)

where ni represents its position in the stack trace and N represents the total number

of references. This normalization process scales the scores to a range between 0 and

1, allowing for easier comparison. This technique commonly referred to as the ‘degree

of interest’, is widely used in relevant literature [6] [27].

2.4 Summary

The background chapter elucidates the core concepts and techniques employed in the

study, including embedding for capturing semantic information (section 2.1), cosine

similarity for measuring semantic relatedness (section 2.2), and Degree of Interest

(section 2.3). It offers a solid foundation to comprehend the subsequent methodolog-

ical developments and empirical evaluations.

Chapter 3

Methodology

This chapter details the methodology employed in the study, encompassing the con-

struction of the dataset, text preprocessing, the implementation of five graph-based

algorithms, search term selection strategy, parameter tuning, and evaluation metrics.

3.1 Construction of the dataset

We reuse the existing dataset and artifacts of STRICT Replication Package [19],

hosted at GitHub. The dataset contains 946 change requests from 22 subject systems,

see Table 3.1. They are collected from two popular bug-tracking systems–BugZilla

and JIRA. Each change request includes an issue ID, title, and description. Table 3.2

shows an example change request from eclipse.jdt.ui system.

In the experiments, we used not only actual change requests but also solutions

applied by developers in practice as ground truth. Each change request is assigned a

solution set (i.e., goldset). It is the collection of a changeset (i.e., a list of changed files)

for each commit operation from the commit history from the selected projects [25].

Table 3.1: Subject Systems and Associated Query Counts

System #Queries System #Queries
ecf 68 eclipse.jdt.core 29
eclipse.jdt.debug 81 eclipse.jdt.ui 240
eclipse.pde.ui 179 tomcat70 33
adempiere-3.1.0 12 apache-nutch-1.8 9
apache-nutch-2.1 17 atunes-1.10.0 16
bookkeeper-4.1.0 21 commons-math-3-3.0 16
derby-10.9.1.0 24 eclipse-2.0 17
jedit-4.2 10 lang 42
mahout-0.4 16 mahout-0.8 15
math 60 openjpa-2.0.1 16
tika-1.3 18 time 7

Total number of Queries = 946

6

7

Table 3.2: An Example Change Request (Issue #: 303705, ECLIPSE.JDT.UI)

Field Content
Title [search] Custom search results not shown hierarchically in the java

search results view
Description Consider an instance of org.eclipse.search.ui.text.Match with an

element that is neither an IResource nor an IJavaElement. It might
be an element in a class diagram, for example. When such an
element is reported, it will be shown as a plain, flat element in the
otherwise hierarchical java search results view. This is because
the LevelTreeContentProvider and its superclasses only check for
IJavaElement and IResource.

3.2 Text Preprocessing

Each change request within the dataset is comprised of two primary items: Title

and Description. To mitigate the influence of inconsequential or redundant words,

we apply a series of standard text preprocessing steps to each change request before

their use. We discuss these steps in detail as follows.

3.2.1 Syntactic Segmentation

Syntactic Segmentation is the process of breaking paragraphs into sentences. We

employed special punctuations and the newline character (“\n”) as delimiters to de-

marcate sentence boundaries. The sentence segmentation is implemented using the

regular expression below [18].

(? <=[. ? ! : ;]) \ s+(?=[a−zA−Z0−9])

3.2.2 Term Decomposition

A dotted term (e.g. org.eclipse.ui.part) often contains multiple technical arti-

facts. We split them by dots (i.e. org, eclipse, ui, and part). For a CamelCase

term (e.g. createPartControl), we split into simpler terms, (i.e., create, Part,

and Control). We decompose camel case tokens using a regular expression as shown

below [18]. This regex helps us find the position of each smaller term, and then we

8

add the space between them for splitting.

([a−z]) ([A−Z]+)

Their decomposition into separate components facilitates an individual assessment

of the importance of each artifact [7]. Both the original CamelCase form and its

decomposed terms are preserved for subsequent analysis, as they may hold distinct

informational value in different contexts [25].

3.2.3 Removal of Nonessential terms and Tokens

Certain words, such as the, is, and, of, etc., while necessary for constructing gram-

matically sound sentences, contribute minimal semantic content and recur frequently

within texts. These are categorized as stop words and are discarded from each

change request to attenuate noise. We use a pre-defined list to find the stop words

in our research, which is from GitHub [19]. Additionally, we discard small tokens,

defined as words with fewer than three characters, as they are deemed less informa-

tive [25].

We retain the original forms of terms rather than stemming, which can more

accurately reflect the nuanced semantics and contextual usage prevalent in the spe-

cialized language of software change requests [16] [25]. Text preprocessing ensures

that subsequent algorithms are performed on a refined and contextually enriched tex-

tual representation, thereby enhancing the accuracy of the algorithm’s analysis of

change requests.

3.3 Calculation of Term Weights

We leverage three types of relationships among words (e.g., statistical, syntactic,

semantic) to construct graphs and apply five different algorithms to them to select

appropriate keywords from a change request. In the following sections, we discuss

them in detail.

9

3.3.1 Statistical Relationship

Graph Construction

Using Word Co-occurrence: After text preprocessing, we get a set of sentences from

each change request. We use these sentences to construct a text graph only based

on word co-occurrence. In this graph, vertices represent words, and edges represent

co-occurrence relationships between them. We set the window to 2 as recommended

by Mihalcea and Tarau [20]. So in each sentence, each group of adjacent words will

be connected. The co-occurrence relationship is bidirectional, so the edges on this

graph are bidirectional also, see Figure 3.1 (a). Finally, we set the total number of

the co-occurrences for each pair of words as their edge weight, which will be used in

the PositionRank calculation later.

We consider the sentence-“Custom search results not shown hierarchically in the

java search results view“ in Table 3.2 as an example [25]. Then its preprocessed version

will be “Custom search hierarchically java search view.” As you can see, there are

several phrases such as “custom search” and “search view” semantically depending

on each other. Term co-occurrence can capture these dependencies in a statistical

sense [25] [23]. For a sliding winder of 2, we can get the following relationships:

Custom↔ search, search↔ hierarchically, hierarchically↔ java, java↔ search, and

search ↔ view. Each unique word will be the vertice, and connect an edge between

each pair in the graph (Figure 3.1 (a)).

Figure 3.1: Text Graphs of change request in Table 3.2 – (a) using word co-
occurrences, and (b) using syntactic dependencies [25]

10

After constructing a text graph based on word co-occurrence, we use TexRank

or PositionRank for term weighting. Their calculation algorithms are followed in the

next sections.

TextRank (TR) Calculation

TextRank is one of graph-based techniques for search term identification used by

STRICT [25]. It has been adapted from the PageRank algorithm to iteratively com-

pute the score (i.e., importance) for each word. In each iteration, a word’s score is

updated as a weighted sum of the scores of the words that point to it (recommends).

It should be noted that the sum is then divided by the number of outgoing links from

the word. The process continues until the scores converge below a specified threshold

or reach a maximum number of iterations (default is 1000). Below is the TextRank

Algorithm formula that we used:

TR(vi) = (1− d) + d ∗
∑

vj∈V (vi)

TR(vj)

|V (vj)|
(3.1)

Here, V (vj) and |V (vj)| denote the node list connected to vi and its total number. d

represents the damping factor, which signifies the likelihood of a user selecting a web

page in the context of web surfing. Conversely, 1− d is the probability of jumping off

that page. The dumping factor has a scalar value between 0 and 1. We use d = 0.85

for our TextRank calculation [25].

PositionRank (PTR) Calculation

PositionRank is proposed by Florescu and Caragea [8]. It is a position-biased Tex-

tRank, and it has a similar graph structure as TextRank. However, when we connect

two candidate tokens, we add the total number of co-occurrences with the document

(i.e., change request) as the weight of the edge. The calculation formula is shown

below:

PTR(vi) = p̃i ∗ (1− d) + d ∗
∑

vj∈In(vi)

wji∑
vk∈Out(vj)

PTR(vj) (3.2)

Here, In(vi) represents the node list pointing to vi, while Out(vj) denotes the node

list emanating from vj. d represents the damping factor (0.85 [8]). wji is the weight

of edge between nodes vi and vj. pi represents the position-biased value of a node,

11

which is the sum of the reciprocals of all positions where the word appears in the

text. Therefore, both the position and frequency of the node will affect the value of

the pi value.

3.3.2 Syntactic Relationship

Graph Construction

Using POS Dependence: We construct a text graph based on grammatical dependen-

cies among the words of a sentence. In this graph, vertices again represent words,

but edges now denote grammatical modification relationships between them (e.g.,

subject-verb, verb-object). Jespersen’s Rank Theory [13] considers the words in a

sentence into three ranks-primary (i.e., nouns), secondary (i.e., verbs, adjectives),

and tertiary (i.e., adverbs). The word with a higher rank can define words at the

same or lower ranks [13]. So, nouns can modify only nouns, a verb can modify nouns,

verbs, or adjectives but not an adverb. We use Stanford POS tagger [32] to annotate

words in each sentence and then connect the directed edge based on their syntactic

ranks. The direction of the edges reflects the syntactic dependencies of the words.

We consider the sentence–“element reported plain flat element hierarchical java

search view” as an example [25]. This sentence can be organized into two ranks–

primary (“search”, “view”, “java”, “element”), and secondary (“plain”, “flat”, “hi-

erarchical”, and “reported”). We derive the following relationships based on their

grammatical modifications–search ↔ view, view ↔ java, java ↔ element, reported

→ search, reported→ view, reported→ java, reported→ element, reported→ plain,

reported → flat, reported → hierarchical. and, then encode them into connecting

edges in the text graph (i.e., Figure 3.1 (b)) [25].

POSRank (PR) Calculation

POSRank is another graph-based technique for search term identification technique

employed by STRICT [25]. It is also an adaptation of PageRank algorithm [4] for

natural language texts. Similar to the rank formula of TextRank, POSRank deter-

mines the score of nodes based on the connection links. We consider that an incoming

link represents a recommendation (or vote) from another term and vice versa. See its

12

formula below:

POSR(vi) = (1− d) + d ∗
∑

vj∈In(vi)

POSR(vj)

|Out(vj)|
(3.3)

Here, In(vi) represents the node list pointing to vi, while Out(vj) denotes the node

list emanating from vj. d represents the damping factor (0.85 [25]).

3.3.3 Semantic Relationship

Graph Construction

Using Conceptual Relevance: The construction of the graph relies on the estimation

of similarity between every pair of words within each sentence. To do that, we as-

sign each word within the change request to a vector representation first. In our

experiment, we use “all-mpnet-base-v2” [30], a pre-trained BERT model from the

HuggingFace Model Hub to do word/sentence embedding. Then we employ cosine

similarity to quantify the resemblance between these vectors (section 2.2). When the

similarity measure value surpasses a predetermined threshold (default set at 0.5), a

bidirectional connection is established between the corresponding words in the graph,

as depicted in Figure 3.2. In addition, we set their similarity measure value as the

weight of the connecting edge, which will be used in the Biased TextRank later. How-

ever, because of the potential abundance of words within each change request, the

computational complexity for assessing all word pairs could escalate exponentially,

consuming substantial processing times. To mitigate this computational burden, we

confine our similarity calculations to word pairs within individual sentences, treating

each sentence as a textual unit.

We use SimRank and Biased TextRank for term weighting on this text graph.

Their calculation algorithms are followed in the next sections.

SimRank (SR) Calculation

In SimRank, we consider whether a term is recommended by another term only based

on whether they are connected. Therefore, we use the same term weighting algorithm

as TextRank. The calculation formula of the SimRank is as follows:

SR(vi) = (1− d) + d ∗
∑

vj∈V (vi)

SR(vj)

|V (vj)|
(3.4)

13

Here, V (vj) and |V (vj)| denote the node list connected to vi and its total number. d

represents the damping factor, and set d = 0.85 for our SimRank calculation [25].

Figure 3.2: SimRank Graph of change request in Table 3.2 using Cosine Similarity
(SIMILARITY THRESHOLD = 0.5)

Biased TextRank (BTR) Calculation

Kazemi et al. [15] introduced Biased TextRank, a graph-based content extraction

method that assigns random restart probabilities to nodes in a graph. It gives more

weight to the nodes that are closer to the focus text based on the similarity of the

graph nodes to the focus of the task. Kazemi et al. [15] applied the Biased TextRank

performance to focused summarization and explanation extraction. In the case of

keyword extraction, we refine the fundamental unit of analysis from sentences to

individual words. Since the title of a change request often serves as a concise en-

capsulation of its essence, we designate it as the focus (or bias) of the text. On the

other hand, candidate search tokens are captured from the description of the change

request.

The edge connections are bidirectional with weights in the Biased TextRank graph.

14

Therefore, Biased TextRank uses the following formula to iteratively update the Bi-

ased TextRank score of a node:

BTR(vi) = BiasWeighti ∗ (1− d) + d ∗
∑

vj∈In(vi)

wji∑
vk∈Out(vj)

BTR(vj) (3.5)

Here, In(vi) represents the node list pointing to vi, while Out(vj) denotes the node

list emanating from vj. d represents the damping factor (0.85 [15]). wji is the weight

of edge between nodes vi and vj. BiasWeighti represents the relevance of graph

node vi to the focus of the text, which is the similarity measure value between the

candidate token and the title in our experiment.

3.4 Search Term Ranking and Selection

In this section, we present and explain our designed algorithm for Search Term Iden-

tification, which harnesses Information Retrieval (IR) methods to extract and rank

relevant search terms from a given Change Request (CR). The pseudocode of the

algorithm, as shown in Algorithm 1, outlines the sequential steps involved in this

process.

The algorithm begins by defining a set of ScoreKeyList (Line 2), comprising TR,

PR, SR, BTR, and PTR, which correspond to different graph-based scoring methods

discussed above (Section 3.3). An empty list L is initialized to hold the identified

search terms (Line 3).

The algorithm first extracts essential information from the change request (CR)

(Line 4-6). The task title T, and description D are separately collected, followed by

their combination and preprocessing, resulting in a unified TD representation. This

preprocessing step has been described in section 3.2.

Next, From lines 7 to 11, five distinct text graphs (Gtr, Gpr, Gsr, Gbtr, Gptr) are

constructed from the preprocessed texts, each tailored to capture specific statistical,

syntactic, and semantic characteristics of the input text. The detail for each graph is

in section 3.3.

Then, we calculate the rank score for all candidate terms in five graphs. For

each graph, when running its term weighting algorithm (Line 14), we initialize each

of the terms with a default value of 0.25 and run an iterative version of the algo-

rithm [25]. However, the initial term score will not affect its final score [23]. We

15

Algorithm 1: Search Term Identification using IR Methods

1 Input: Change Request CR

2 ScoreKeyList ← {TR, PR, SR, BTR, PTR}
3 L ← {} ; // list of search terms

// collecting task details from the change request

4 T ← collectTitle(CR)

5 D ← collectDescription(CR)

6 TD ← preprocess(combine(T,D))

// developing text graphs from the task details

7 Gtr ← developTRGraph(TD)

8 Gpr ← developPRGraph(TD)

9 Gsr ← developSRGraph(TD)

10 Gbtr ← developTSRGraph(EMBED(T), preprocess(D))

11 Gptr ← developTPRGraph(TD)

// calculating Candidate Token Score

12 TokenScoreMap ← {} ; // hashmap of candidate token score map

13 for G ∈ [Gtr, Gpr, Gsr, Gbtr, Gptr] do

14 CTS ← calculateRankScore(G, scoreKey)

15 CTSnorm ← normalize(sortByValue(CTS)

16 TokenScoreMap ← combine(TokenScoreMap, CTSnorm, scoreKey)

// determining term importance

17 CST ← getUniqueTerms(TD)

18 for CandidateSearchTerm CSTi ∈ CST do

19 S[CSTi] ← calculateTokenRankScore(CSTi)

// ranking and then returning Top-K search terms

20 SST ← sortByFinalTermWeight(S)

21 L ← getTopKSearchTerm(SST)

// add additional title terms

22 foreach t in preprocess(T) do

23 if t is not in L then

24 L.add(t);

25 return L ;

16

obtain a collection of candidate words accompanied by their respective rank scores in

each graph. To mitigate the risk of undue influence exerted by any individual score

and ensure a more equitable assessment, we subject normalize the node scores from

each graph via the prescribed formula shown in Algorithm 2 (Line 15). Consequently,

the resulting normalized scores are invariably confined within the interval [0, 1]. The

TokenScoreMap in line 16 is the final candidate term score map to store the rank

scores of candidate tokens across the various graph representations.

Algorithm 2: Candidate Score Normalization Algorithm

1 Input: R: candidates search terms sorted by scores

2 for CandidateSearchTerm t ∈ R.keys do

3 R[t] ← 1− position(t)
size(R)

4 return R ;

In line 19, we derive the definitive rank score attributed to each candidate token

by aggregating its individual rank scores across all graphs, as outlined in Algorithm 3.

To account for the varying impact of individual graph models in shaping the overall

term significance, we introduce adjustable parameters α, β, γ, δ, and ϵ for five different

graphs. By default, these weights are set to unity, signifying equal consideration of

all graph models (default value is 1). Conversely, should a parameter be assigned a

value of zero, it effectively discounts the corresponding graph from the term selection

process. The search terms are then ranked based on their final term weights. We

select the top K search terms (default value is 10) based on their weights.

Rahman and Roy [25] assigned an additional weight to words appearing within the

document title. Title keywords often encapsulate the essence of a change request and

thus are suitable candidates for search terms. So, we undertake a final examination

to ascertain whether any tokens extracted from the preprocessed title are absent from

the generated suggested query (Lines 21-23). If missed, we add the title terms to the

ranked search terms to finalize our search query from a change request (Line 24).

17

Algorithm 3: Calculate Token Rank Score

1 Input: candidates search term CST

2 STR ← TokenScoreMap[CST].textRankScore

3 SPR ← TokenScoreMap[CST].posRankScore

4 SSR ← TokenScoreMap[CST].simRankScore

5 SBTR ← TokenScoreMap[CST].bTextRankScore

6 SPTR ← TokenScoreMap[CSTi].positionRankScore

// calculating final term-weight

7 S ← αSTR + βSPR + γSSR + δSBTR + ϵSPTR

8 return S ;

3.5 Parameter Tuning

The performance of our proposed algorithm is influenced by the values assigned to the

tunable parameters α, β, γ, δ, and ϵ. They weigh the contributions of different term

weights calculated by different algorithms. To determine optimal settings for these

parameters, we implemented an automated parameter tuning process as outlined

in Algorithm 4 [16]. We aim to optimize the parameters of a model by iteratively

adjusting their values within specified bounds. In particular, we optimize the MRR

of our search queries to determine the optimal weights of α, β, γ, δ, and ϵ.

Our parameter tuning process starts with the initial parameter vector, reflecting a

priori assumptions about the relative importance of the respective graph algorithms.

We check the performance of five term-selection algorithms in Tables 4.1, and start our

optimization with the initial values of 2, 3, 2, 2, 1 for α, β, γ, δ, and ϵ respectively.

In addition, we also check the performance of distinct combinations of graphs in

Table 4.2. The best combinations in each group will also be tested as the initial

values.

In each iteration of the optimization process, we consider each parameter individu-

ally. By slightly incrementing or decrementing one parameter by a step size (learning

rate, λ), we obtain two new sets of parameters (newParamsUp and newParamsDn).

The updated values remain within the specified minimum (wmin, default is 0) and

maximum (wmax, default is 100) bounds (Lines 10-11).

18

Algorithm 4: Tune Parameters

1 Input: learning rate λ, maximum weight wmax, minimum weight wmin,

maximum number of iterations MAXITER

2 Output: Optimized parameters

// Step 1: Initialization

3 Let Parameters ← [α = 2, β = 3, γ = 2, δ = 2, ϵ = 1]

4 Let fitV albest ← fitness(Parameters)

// Step 2: Parameter Refinement

5 Let itercount ← 0

6 while itercount < MAXITER do

7 for index i < Parameters.length do

8 Let newParamsUp ← Parameters .clone();

9 Let newParamsDn ← Parameters .clone();

10 newParamsUp[i] ← Math.min(Parameters [i] + λ, wmax);

11 newParamsDn[i] ← Math.max(Parameters [i] - λ, wmin);

12 Let fitV alup ← fitness(newParamsUp)

13 Let fitV aldn ← fitness(newParamsDn)

14 if fitV alup > fitV albest or fitV aldn > fitV albest then

15 Update fitV albest and Parameters ;

16 else

17 Break ;

18 itercount ++

// Step 3: Output

19 return α, β, γ, δ, ϵ ;

19

The default value of the learning rate, λ, is 0.1. To increase the precision of the

parameters, i.e., to increase the number of digits after the decimal point, the learning

rate is reduced, such as 0.01 or 0.001. Adjusting the learning rate allows for fine-

tuning the parameters to achieve higher precision in parameter values, which can be

crucial for optimizing the performance of our suggested queries.

The fitness function calculating MRR is evaluated for both the incremented and

decremented parameter settings, and the best fitness value is retained. If no im-

provement in fitness is observed for any parameter or has arrived at the maximum

iterations (MAXITER) the process stops and returns the current parameter vector

as the optimized set. (Lines 12-17)

When training the parameters, we randomly divide the dataset into two distinct

subsets: a training set and a testing set. This helps avoid bias caused by overfitting

to the specific patterns cases and ensures fairness.

Overall, this algorithm provides a systematic and automated approach to fine-

tune the parameters of our technique, potentially improving its performance on a

given task.

3.6 Experimental Design

We execute the suggested queries from our technique – STRICT++ algorithm us-

ing a Vector Space Model (VSM) based search engine – Apache Lucene [25]. Then

we evaluate our queries by comparing their results against the ground truth source

files that were changed in response to change requests. In particular, we use four

performance metrics and answer three research questions.

3.6.1 Performance Metrics

In our experiment, we employ four performance metrics to rigorously evaluate our

suggested search queries. These metrics have been regularly used by relevant re-

search [25] [8], which makes them suitable for our work.

20

Effectiveness (E):

Effectiveness (E) is the rank of the first true positive in search results. A smaller

effectiveness indicates that the query is more efficient and the expected result appears

closer to the top of the result list.

Mean Reciprocal Rank (MRR):

Mean Reciprocal Rank (MRR) is a metric that computes the mean of reciprocal

ranks of the first correct result within the top-K (K=10) search results for all change

requests. The higher MRR values indicate superior query performance. We use this

metric not only to evaluate our queries but also to tune our parameters (Section 3.5)

MRR =
1

|Q|
∑
q∈Q

1

FirstGoldRank(q)
(3.6)

Here, Q and |Q| denote the set of all queries and their total number respectively.

FirstGoldRank(q) is the rank at which the first correct result was found using a

query, q.

Mean Average Precision (MAP):

This metric is used to quantify a technique’s overall capability to accurately and

favorably rank relevant items for multiple queries. It is derived by computing the

mean of Average Precision scores across all queries. Average Precision itself is the

weighted average of Precision at each occurrence of a relevant item within the top-K

results as follows:

AP =

∑D
k=1 Pk

|RetrievedGoldset(q)|
(3.7)

MAP =
1

|Q|
∑
q∈Q

AP (q) (3.8)

Here, Pk denotes the precision at kth result. RetrievedGoldset(q) refers to all ranks

at which correct results were found using a query (q), and D is the number of the

rank list. Q is the set of all queries.

21

Top-K Accuracy:

It measures the proportion of change requests for which the search queries successfully

retrieve at least one true positive result within the top-K results. It serves as a concise,

query-based indicator of a technique’s ability to accurately retrieve relevant results

within high-ranking positions.

3.7 Summary

The methodology chapter outlines a structured and rigorous experimental procedure.

Firstly, the chapter introduces the structure of an existing dataset and describes

the process of collecting ground truth. Next, the change request is segmented into

sentences and pre-processed. Subsequently, five text graphs (TextRank, POSRank,

SimRank, Biased TextRank, and PositionRank) are constructed, and the correspond-

ing term weight algorithms are applied to calculate the rank score for each candidate

term. The chapter also explains the term ranking algorithm and selection method.

Finally, four evaluation metrics are introduced in our experiment. They are Effective-

ness(E), Mean Reciprocal Rank(MRR), Mean Average Precision(MAP), and Top-K

Accuracy.

Chapter 4

Empirical findings

This chapter presents the empirical results and analyses derived from applying the

proposed methodology to the dataset of change requests. It focuses on answering three

research questions and assessing the performance of individual graph-based algorithms

and their combinations in selecting effective search terms for concept location.

4.1 RQ1: How does each graph help us find effective search terms for

concept location?

We evaluate 946 search queries from 22 subject systems in our experiment. Table 4.1

presents their retrieval performance in terms of MAP, MRR, and Top-10 Accuracy,

for five different graph-based algorithms: TextRank, POSRank, SimRank, Biased

TextRank, and PositionRank.

Table 4.1: Retrieval Performance of Search by Each Algorithm

Query MAP MRR Top-10 Accuracy

TextRank 19.24% 0.2041 33.97%
POSRank 20.23% 0.2135 35.30%
SimRank 19.08% 0.1988 34.79%
Biased TextRank 19.04% 0.2009 34.69%
PositionRank 18.28% 0.1951 32.74%

We see that POSRank performs the best among all techniques in terms of all met-

rics: MAP (20.23%), MRR (0.2135), and Top-10 Accuracy (35.30%). This indicates

that POSRank is the most effective in selecting search terms from a change request.

That is, the Parts of Speech (POS) Dependence in the sentence plays a key role in

analyzing the keyword extraction. On the contrary, PositionRank has the worst per-

formance in terms of MAP (18.28%), MRR (0.1951), and Top-10 Accuracy (32.74%).

Thus, the position and frequency of terms in the change request are less important

than other word relationships when determining their importance.

22

23

TextRank, SimRank, and Biased TextRank are comparable in performance. Al-

though not as good as POSRank, they still have certain advantages in some indicators.

For example, TextRank achieves the second highest MRR value at 0.2041 and MAP

value at 19.24%. SimRank has the second highest Top-10 Accuracy value at 34.79%.

So, in the search term selection, the order of these suggested queries based on

their performance is:

POSRank > TextRank ⪆ SimRank ⪆ Biased TextRank > PositionRank

When tuning parameters, we use the performance ranking of individual algorithms

as a reference for setting weights or adjusting related parameters of these algorithms.

POSRank gets the highest weight (3) because of its superior performance, followed

by TextRank, SimRank, and Biased TextRank gets the second highest weight (2),

while PositionRank weights 1 (section 3.5, RQ3).

4.2 RQ2: How do various combinations of graphs help us find effective

search terms for concept location?

In the second experiment, we examine the performance of each combination of graphs

in search term selection. We analyze the combinations of varying numbers of graph

algorithms (from 2 to 5) and evaluate their queries in terms of MAP, MRR, and

Top-10 Accuracy.

When TextRank (TR), PositionRank (PR), SimRank (SR), Biased TextRank

(BTR), and POSRank (PTR) are used simultaneously, their combination achieves a

MAP of 19.99%, an MRR of 0.2084, but a relatively low Top-10 Accuracy of 33.76%.

This is slightly worse than the combination of fewer text graphs, suggesting that in

search term selection, more text graphs and inter-word relationships might always

not lead to better performance. As shown in our experiment, too many factors can

introduce noise and reduce the overall performance. In the following sections, we

investigate the combination of less than five graph-based algorithms.

4.2.1 Four-graph combinations

As shown in Table 4.2, the performance of various four-graph combinations varies

significantly. Among them, the combination of TR, PR, SR, and BTR attains the

24

Table 4.2: Retrieval Performance of Graph Combination

TR PR SR BTR PTR MAP MRR Top-10 Accuracy

Five Graphs
✓ ✓ ✓ ✓ ✓ 19.99% 0.2084 33.76%

Four Graphs
✓ ✓ ✓ ✓ 19.87% 0.2062 34.71%
✓ ✓ ✓ ✓ 19.13% 0.2012 33.88%
✓ ✓ ✓ ✓ 18.93% 0.1997 33.11%
✓ ✓ ✓ ✓ 18.97% 0.1961 32.99%

✓ ✓ ✓ ✓ 20.06% 0.2116 33.92%
Three Graphs

✓ ✓ ✓ 20.47% 0.2118 35.87%
✓ ✓ ✓ 19.26% 0.2015 35.52%
✓ ✓ ✓ 19.08% 0.2014 33.80%
✓ ✓ ✓ 19.38% 0.2008 34.29%
✓ ✓ ✓ 20.02% 0.2083 34.77%
✓ ✓ ✓ 18.50% 0.1923 33.26%

✓ ✓ ✓ 20.79% 0.216 35.03%
✓ ✓ ✓ 19.31% 0.2021 33.34%
✓ ✓ ✓ 19.95% 0.2094 33.23%

✓ ✓ ✓ 19.24% 0.1993 32.69%
Two Graphs

✓ ✓ 19.32% 0.2017 36.32%
✓ ✓ 20.75% 0.2138 35.51%
✓ ✓ 18.63% 0.1936 33.34%
✓ ✓ 18.77% 0.2022 34.13%

✓ ✓ 20.42% 0.2114 35.42%
✓ ✓ 20.35% 0.2134 34.79%
✓ ✓ 18.58% 0.1994 32.40%

✓ ✓ 18.53% 0.1960 33.88%
✓ ✓ 19.38% 0.2013 31.80%

✓ ✓ 18.18% 0.1920 32.82%

TextRank(TR), POSRank(PR), SimRank(SR), Biased TextRank(BTR), and PositionRank(PTR)

25

highest Top-10 Accuracy of 34.71%, with relatively balanced MAP (19.87%) and

MRR (0.2062) scores. On the other hand, the combination excluding TR (i.e., PR,

SR, BTR, PTR) has the highest MAP and MRR values, at 20.06% and 0.2116 respec-

tively with a second highest Top-10 Accuracy of 33.92%. The remaining four-graph

combinations do not demonstrate notable performances in search term selection.

4.2.2 Three-graph combinations

In three-graph combinations, the exclusive use of TR, PR, and SR stands out with ex-

cellent performance across all evaluation metrics. Specifically, it achieves the highest

Top-10 Accuracy at 35.87% among three-graph combinations, along with the second

highest MAP (20.47%) and MRR (0.2118) scores. Additionally, the combination us-

ing only PR, SR, and BTR reaches the optimal MAP value of 20.79% and optimal

MRR value of 0.216. Similarly, a combination of PR, SR, and BTR is found to be

the best combination when only MAP and MRR are considered. After comparing

the performance of three-graph combinations with combinations of two, four, and five

graphs, we find that using three text graphs may be an optimal choice for a text-graph

combination algorithm.

4.2.3 Two-graph combinations

The performance of two-graph combinations is mixed. The combination using only

TR and SR has the second highest Top-10 Accuracy (35.51%), and its MRR (0.2075)

and MRR (21.38%) are both the best in this group. The combination of TR and

PR achieves the highest Top-10 Accuracy among all combinations at 36.32%, but its

MAP and MRR are not very high. Other two-graph combinations do not exhibit

clear advantages across all metrics.

4.2.4 Summary

The performance of different graph combinations in search term selection varies sig-

nificantly, with no ultimate winner. However, a few combinations demonstrate ex-

ceptional performance:

- The combination of POSRank, SimRank, and Biased TextRank demonstrates

strong performance across all metrics, achieving optimal MAP and MRR values of

26

20.79% and 0.216, respectively, along with a high Top-10 Accuracy of 35.03%. The

MRR value of 0.216 indicates that, on average, the first correct result appears at

position 1 / 0.216 ≈ 4.63 in the search result list. This means that users need to

scroll down to approximately the fourth to fifth results to find the result.

- The combination of TR and SR attains the highest Top-10 Accuracy among all

combinations at 36.32%, but its MAP and MRR are both lower than the average

values.

These findings indicate that judicious selection and a combination of specific graph

algorithms can effectively enhance performance in search term selection performance.

In practice, depending on task requirements and resource constraints, the appropri-

ate graph algorithm combination should be chosen based on their evaluation metrics.

TR, PR, SR, and BTR demonstrate strong synergies in different combinations. In

addition, both POSRank and SimRank are included in the top two optimal combina-

tions. Thus, POSRank and SimRank potentially serve as potent tools for optimizing

keyword selection systems.

4.3 RQ3: Can we find optimal weights for various algorithms targeting

search term selection?

In this experiment, we optimized term selection from change requests using five graph-

based algorithms–TextRank, POSRank, SimRank, Biased TextRank, and PositionRank–

and determined the relative importance of their scores through parameter tuning, see

Algorithm 4 in section 3.5. We attempt to find a combination of weights for these

algorithms, which can outperform the STRICT [25].

Table 4.3 shows several results of weighted graph combinations in parameter tun-

ing. The best weight combination found in our experiment is TR (TextRank) = 0,

PR (PositionRank) = 9, SR (SimRank) = 0.4, BTR (Biased TextRank) = 1, and

PTR (POSRank) = 1 achieving an MRR of 0.2181. This indicates that, on average,

the first correct result appears at position 1 / 0.2181 ≈ 4.58 when users need to find

the most relevant result. We will refer to this new technique, with this specific weight

contribution, as STRICT++.

The POSRank algorithm has the highest weight (9), underscoring the importance

of syntactic relationships between words in keyword extraction. Although SimRank

27

Table 4.3: Performance of Weighted Graph Combination in Parameter Tuning

Initialization Parameters Output Weights and Metric
α β γ δ ϵ Learning rate (λ) TR PR SR BTR PTR MRR

2 3 2 2 1 0.1 1 4 2.1 2 1 0.2101
1 1 1 1 1 0.1 0 2 0.2 1.1 0.9 0.2170
0 1 1 1 1 0.1 0 9 0.4 1 1 0.2181
0 1 1 1 0 0.1 0 11 1 1 0.2 0.2177
1 0 1 0 0 0.1 0 8 0 0 1 0.2170

α, β, γ, δ, and ϵ = Initialization weights of TR, PR, SR, BTR, and PTR in Algorithm 4;
TR, PR, SR, BTR, and PTR = The weights of TextRank, POSRank, SimRank, Biased TextRank,
and PositionRank;

Table 4.4: Comparison of retrieval performance between STRICT and STRICT++

Query MAP MRR Top-10 Accuracy

STRICT [25] 19.32% 0.2017 36.32%
STRICT++ 20.78% 0.2147 37.60%

is included in STRICT++, its low weight (0.4) suggests a relatively limited impact on

the experiment. In contrast, both Biased TextRank and PositionRank carry higher

weights (both 1), indicating significant roles for task-specific biases and position biases

in search term selection. TextRank, however, was excluded (weight 0). We can find

the reason from the graph construction outlined in section 3.3.1. Both PositionRank

and TextRank graphs are constructed based on word co-occurrences. However, Posi-

tionRank incorporates more biases than TextRank, including the position information

of words, effectively integrating TextRank principles. As a result, PositionRank car-

ries a higher weight than TextRank. Similar reasoning applies to the comparison

between SimRank and Biased TextRank.

The experimental results are almost consistent with the theoretical expectations.

In STRICT++, POSRank, Biased TextRank, and PositionRank have a more sig-

nificant impact on search term selection compared to the other two graph-based

algorithms. These three algorithms leverage statistical, syntactic, and semantic word

relationships respectively, highlighting the importance of considering all three types

of word relationships in search term selection.

Table 4.4 compares the performance of STRICT++ and STRICT. STRICT++

outperforms STRICT with a MAP of 20.78%, MRR of 0.2147, and Top-10 Accuracy

28

of 37.6%.

4.3.1 Comparison with Baseline Queries

When addressing software change requests, a common practice among developers

is to copy text directly from change requests and apply it to source code searches.

Hence, such change requests effectively serve as the baseline queries against which

the performance of our suggested queries is evaluated and validated [2] [11] [16].

Our experiment encompassed three distinct baseline query types. These were: Title,

Description, and a composite Title+Description. Additionally, a truncated Title (10

keywords) is also considered, which reflects our algorithmic constraints to truncate

the query length to a maximum of 10 keywords.

We collected the ranks of the first correct result for each software change request

using STRICT++ and each baseline query. Subsequently, we calculated the percent-

ages of cases where STRICT++ showed improvement, deterioration, or maintenance

of the ranking status quo compared to the baselines. Another comparative evalu-

ation metric is the Mean Rank Difference (MRD), which quantifies the arithmetic

mean of the discrepancies in rank values observed between STRICT++ and the base-

line queries across the entire change requests. A negative MRD value (e.g., -215)

signifies that the first correct result achieved by STRICT++ is retrieved at an upper-

rank position than that of the baseline queries, thereby indicating improved search

efficiency.

Table 4.5: Comparison of STRICT++’s Effectiveness with Baseline Queries

Query Pairs Improved Worsened Preserved MRD

STRICT++ vs. Title 44.69% 32.91% 22.40% -85
STRICT++ vs. Title (10 keywords) 54.67% 23.99% 21.34% -215
STRICT++ vs. Description 44.06% 34.29% 21.66% -125
STRICT++ vs. (Title+Description) 38.54% 38.64% 22.82% 4

MRD = Mean Rank Difference between STRICT++ and baseline queries

Table 4.5 provides a comprehensive comparison of the efficacy of STRICT++

against the performance of the baseline queries. It reveals that our suggested queries

outperform the baseline queries in 44% to 55% of cases when compared with the

Title, Title (10 keywords), and Description queries while preserving quality in 21%

29

to 23% of cases. The big negative MRD values also prove that the STRICT++ can

return an earlier rank position than the baseline queries, which further underscores

the potential superiority of our proposed approach. However, the performance of

STRICT++ and composite Title+Description queries are almost the same. Although

38.54% of change requests are improved with the help of STRICT++, 38.64% of

change requests return a later rank position. The value of MRD (4) is small and

negligible. It is noteworthy that STRICT++ exhibits a marked enhancement in

performance relative to the 10-keyword Title variant. When comparing against the

unrestricted Title baseline query, STRICT++ not only boosts an additional 10% of

change requests to have an upper first correct rank position but also realizes the

average ranking improvement represented by MRD is more than twice as large.

Thus, compared with the baseline queries, our suggested query technique STRICT++

is slightly more effective than baseline queries from the change requests. They provide

better ranks than baseline queries for 44%–55% of the requests which is promising.

4.4 Summary

The empirical findings chapter presents a comparative evaluation of five graph-based

algorithms (TextRank, POSRank, SimRank, Biased TextRank, and PositionRank) in

terms of MAP, MRR, and Top-10 Accuracy. The results show that POSRank per-

forms well not only on its own but also when combined with other algorithms. This

highlights the importance of POS dependence in keyword extraction. In addition,

when processing change requests with less syntax structure, Biased TextRank, and

PositionRank complement POSRank by providing semantic and position informa-

tion. We propose a novel technique, STRICT++, which combines POSRank, Sim-

Rank, Biased TextRank, and PositionRank, leveraging three types of word relations.

STRICT++ achieves performance improvements outperforming STRICT.

Chapter 5

Threats to validity

This study has employed rigorous methods to evaluate TextRank, POSRank, Sim-

Rank, Biased TextRank, and PositionRank in search term selection for concept loca-

tion. However, we should acknowledge several potential threats to validity to ensure

a comprehensive understanding of the results and their implications.

5.1 Internal Validity

Threats to internal validity relate to experimental errors and biases [16]. The ac-

curacy and efficiency of the algorithms under study may be influenced by the spe-

cific re-implementation details. Although we have made every effort to adhere to

the published specifications of STRICT (TextRank and POSRank) [25], Biased Tex-

tRank [15], and PositionRank [8], variations in coding practices, libraries, or compu-

tational resources could introduce subtle differences in performance. To mitigate this

threat, we have used well-established and widely adopted libraries for graph-based

computations and ensured thorough testing of our implementations to mitigate this

threat.

The choice of similarity thresholds can impact the performance of SimRank and

Biased TextRank. We have performed an ablation study in RQ2 and found that when

set 0.5 as the similarity threshold can get better performance in the combination of

different text graphs. However, there may still be alternative configurations that yield

better results in specific contexts. During the parameter tuning, different weights for

the SimRank and Biased TextRank may cause a new optimal similarity threshold

value. Future work could explore more exhaustive parameter sweeps or adaptive

tuning strategies to further optimize the algorithms’ performance.

30

31

5.2 External Validity

Threats to external validity concern the generalizability of a technique [28]. The

results obtained are contingent on the characteristics of the datasets used for ex-

perimentation. Variations in factors such as change requests, source code structure,

and the presence of specific domain terminology may impact the generalizability of

our findings. Despite our efforts to enhance diversity by employing multiple subject

systems, some systems, like apache-nutch-1.8 and Time, have fewer datasets. The

distribution of change requests per subject system is uneven. Additionally, our ex-

perimentation was limited to Java-based systems [19], which could introduce bias into

the results.

During the re-implementation of Biased TextRank, we employed the title as the

bias phrase for queries and performed keyword extraction from descriptions. This

approach assumes that the title is more significant and represents common or reason-

able practices in the industry. While these assumptions serve as a practical starting

point for evaluation, actual developer behavior may deviate from these simplified as-

sumptions. Conducting user studies or analyzing real-world query logs could offer a

more accurate assessment of the relative benefits provided by our proposed methods.

It is essential to consider that STRICT++ relies on precise parsing of syntactic re-

lations in change requests. However, many change requests may be hastily drafted by

non-technical users, which could lead to requests with unclear or chaotic grammatical

structures. In this case, the part-of-speech tagger will struggle to identify the syn-

tactic connections necessary for constructing the graph in POSRank. Consequently,

when faced with change requests containing grammatically flawed text, STRICT++’s

ability to accurately discern and rank search terms can be compromised. Although

STRICT++ has support from the word co-occurrence and conceptual relevance, the

high contribution of syntactic relation still causes this threat.

Chapter 6

Related work

The concept of search term identification has been widely studied in software engi-

neering, with various approaches proposed. This chapter delves into the related work

that inspired and contrasts with the research presented in this thesis.

6.1 TF-IDF

Determining the relative importance of terms in a text document is often called term

weighting [29]. Two term weighting methodologies are commonly used in software en-

gineering. In addition to the graph-based approach of STRICT++, the other method

is frequency-based. TF-IDF [31] is a frequency-based term weighting. Unlike graph-

based term weighting, TF-IDF considers the importance of a term solely based on its

frequency within a document and its rarity across the entire corpus [29]. This means

that a term that is frequent within a document but rare in other files across the corpus

is considered as the keyword for that document. TF-IDF has been widely adopted by

the literature for term weighting [11] [16]. However, TF-IDF does not explicitly con-

sider the syntactic roles of words or their semantic associations, which are integral to

STRICT++’s approach. The optimal search keywords might not always be frequent

in the change request [29]. So, TF-IDF’s simplicity does not inherently account for

the complex interdependencies among words that may exist in the specialized domain

of software engineering change requests.

6.2 QUICKAR

Rahman and Roy [24] proposed a novel technique QUICKAR. It makes good use of

two candidate word sources, Stack Overflow and the source code. Stack Overflow is

used to build a word adjacency list database for keyword extraction by performing

standard natural language preprocessing and capturing co-occurring words. In the

32

33

algorithm, QUICKAR uses the cosine similarity measure for the contextual similarity

between words for candidate terms from the project and checks the co-occurrence

frequency between words for candidate terms from Stack Overflow to calculate the R

score. This technique gave me a lot of inspiration when I tried to extend STRICT [25].

Both QUICKAR and the extended technique STRICT++ in the project use seman-

tical relevance. However, the difference is that QUICKAR correlates the candidate

words with the words in the database built based on Stack Overflow, to find words sim-

ilar to the candidate words and add them to the suggested search terms. STRICT++

does not use other resources but only focuses on the change request itself. Perform

a similarity search in the content of the change request to explore the possible rela-

tionship between semantic relevance and suggested search words.

6.3 BLIZZARD

Rahman and Roy [26] proposed a novel technique BLIZZARD. This technique is pri-

marily intended to address the challenge that bug reports may contain different types

of structured information. Whether lacking rich structured information or having too

much-structured information, can lead to poor search results. Therefore, BLIZZARD

divides the bug reports into three categories according to different structural elements

before keyword extraction: stack traces, program elements, and natural language.

Then correspond to three different graphs: Trace Graph, Text Graph, and Source

Term Graph. Among them, text graph development for bug reports with program

elements is exactly the TextRank and POSRank graphs that STRICT [25] used word

Co-occurrences and POS dependencies. In addition, in the development of source-

term graphs for bug reports using only natural language. Pseudo-relevance feedback

related to similarity is mentioned. The main purpose of using pseudo-relevance feed-

back is to supplement bug reports with appropriate keywords, just like the similarity

database used in QUICKAR [24], which plays a complementary role. However, in

our project, STRICT++ detects the similarity of word pairs to give them different

weights instead of looking for more similar terms.

34

6.4 ChatGPT

The advent of large language models like OpenAI’s ChatGPT [34] presents a con-

trasting approach to search term identification and concept location in software en-

gineering. Unlike our information retrieval principle-based algorithm, ChatGPT is a

large-scale neural network model that learns from vast amounts of text data to gener-

ate coherent and sometimes creative outputs. Although ChatGPT is primarily used

for natural language understanding and generation tasks, it is a potential competitor

in search term selection.

Although ChatGPT possesses powerful capabilities in natural language under-

standing and generation, it presents different trade-offs in cost-effectiveness and de-

terminism compared to STRICT++. Lage language models typically require substan-

tial computational costs for both training and inference due to their complex neural

network architectures. However, information retrieval techniques often rely on more

straightforward indexing and query processing mechanisms. In addition, ChatGPT

can generate multiple possible outcomes based on input due to their probabilistic

nature, which may suggest novel and contextually relevant search keywords in some

cases. However, it may also result in inaccurate generation or content irrelevant to

actual change requirements, known as the ”hallucinated” phenomenon [34]. In con-

trast, STRICT++ is cheaper and more deterministic, consistently producing valid

search terms without the risk of generating irrelevant content.

The integration of two methodologies would leverage their respective strengths:

Information retrieval-based algorithms provide precise and reliable keyword sugges-

tions based on established inter-word relationships and term weighting; ChatGPT

contributes additional contextually relevant keywords or phrases based on its strong

contextual understanding and creative output capabilities.

6.5 Summary

Term weighting is one of the methods to determining the keywords in a text docu-

ment. Besides the graph-based term weighting in STRICT++, the frequency-based

term weighting method–TF-IDF has traditionally served as a foundational tool for

extracting relevant keywords from textual artifacts (e.g. bug reports and change

35

requests). The quality of change requests significantly impacts the performance of

information retrieval (IR)–based search keyword selection. Therefore, some literature

(e.g. QUICKAR, BLIZZARD) explores extending the suggested queries by analyzing

semantic relatives to supplement context with appropriate keywords. ChatGPT is

also a potential competitor with its strong contextual analysis capability in search

term selection.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Research indicates that developers face difficulties in selecting search terms based on a

change request. An existing technique–STRICT–helps keyword selection and suggests

search tokens using two term-weighting techniques–TextRank and POSRank. How-

ever, this technique misses using the semantic relationship among words from three

types of inter-word relationships to implement text graphs. We designed a SimRank

graph using the semantic relationship among words. In addition, Biased TextRank

and PositionRank are introduced. Experiments with 946 change requests from 22

subject systems on the combination of five text graphs show the importance of all

three types of word relationships contributing to search term selection. We proposed

a new technique called STRICT++, a weighted multi-graph-based keyword selection

tool leveraging three different word relationships. The improved retrieval performance

of STRICT++ over STRICT and baselines substantiates the efficacy of the weight

distribution on distinct text graphs in search term selection for concept location.

Experimental data along with supporting materials are available elsewhere [1].

7.2 Future Work

Future work could focus on optimizing TextRank’s contribution or further fine-tuning

the weights to enhance performance. Additionally, since we only experimented with

Java-based systems, there is an opportunity to generalize STRICT++ to other lan-

guage subject systems. Furthermore, change requests are primarily written in natural

language text, which causes the high contribution of POSRank (syntactic word rela-

tionship) in our new technique. We should evaluate STRICT++ on change requests

with more code structure and less grammar to explore its performance in all structure

types of change requests.

36

Bibliography

[1] STRICT++: Experimental Data. URL https://github.com/Lareina-Y/

STRICT-QR-Module.

[2] Blake Bassett and Nicholas A. Kraft. Structural information based term weight-
ing in text retrieval for feature location. In 2013 21st International Conference
on Program Comprehension (ICPC), pages 133–141, 2013.

[3] Roi Blanco and Christina Lioma. Graph-based term weighting for informa-
tion retrieval. Information Retrieval, 15(1-2):54–92, 2012. doi: 10.1007/
s10791-011-9172-x.

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[5] CAMBRIDGE, UK (PRWEB). Cambridge University Study States Software
Bugs Cost Economy $312 Billion Per Year Share Article, January 2013. [On-
line] https://www.prweb.com/releases/2013/1/prweb10298185.htm – Last
accessed: 2013-01-08.

[6] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. Context-based recommenda-
tion to support problem solving in software development. In 2012 Third Interna-
tional Workshop on Recommendation Systems for Software Engineering (RSSE),
pages 85–89. IEEE, 2012.

[7] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. Can
better identifier splitting techniques help feature location? In 2011 IEEE 19th
International Conference on Program Comprehension, pages 11–20, 2011.

[8] Corina Florescu and Cornelia Caragea. PositionRank: An unsupervised ap-
proach to keyphrase extraction from scholarly documents. In Regina Barzilay
and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 1105–1115.
Association for Computational Linguistics, July 2017.

[9] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabu-
lary problem in human-system communication. Commun. ACM, 30(11):964–971,
1987.

[10] GeeksGorGeeks. Cosine Similarity. [Online] https://www.geeksforgeeks.org/
cosine-similarity/ – Last accessed: 2023-02-17.

37

https://github.com/Lareina-Y/STRICT-QR-Module
https://github.com/Lareina-Y/STRICT-QR-Module
https://www.prweb.com/releases/2013/1/prweb10298185.htm
https://www.geeksforgeeks.org/cosine-similarity/
https://www.geeksforgeeks.org/cosine-similarity/

38

[11] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lu-
cia, and Tim Menzies. Automatic query reformulations for text retrieval in
software engineering. In 2013 35th International Conference on Software Engi-
neering (ICSE), pages 842–851, 2013.

[12] Jeffrey Pennington, Richard Socher, Christopher D. Manning. GloVe: Global
Vectors for Word Representation, August 2014. [Online] https://nlp.

stanford.edu/projects/glove/ – Last accessed: 2023-02-24.

[13] Otto Jespersen. The philosophy of grammar. Routledge, 2013.

[14] Ning Jianfei and Liu Jiangzhen. Using word2vec with textrank to extract key-
words. Data Analysis and Knowledge Discovery, 32(6):20–27, 2016.

[15] Ashkan Kazemi, Verónica Pérez-Rosas, and Rada Mihalcea. Biased textrank:
Unsupervised graph-based content extraction. arXiv preprint arXiv:2011.01026,
2020.

[16] Katja Kevic and Thomas Fritz. Automatic search term identification for change
tasks. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE Companion 2014, page 468–471, 2014.

[17] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information retrieval and
spectrum based bug localization: better together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
page 579–590. Association for Computing Machinery, 2015.

[18] Masudur Rahman. STRICT-QR-Module, 2021. [Online] https://github.com/
masud-technope/STRICT-QR-Module – Last accessed: 2023-01-20.

[19] Masudur Rahman. STRICT-Replication-Package, 2021. [Online] https://

github.com/masud-technope/STRICT-Replication-Package – Last accessed:
2023-01-20.

[20] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceed-
ings of the 2004 conference on empirical methods in natural language processing,
pages 404–411, 2004.

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[22] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA ’11, page 199–209. Association for
Computing Machinery, 2011.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/masud-technope/STRICT-QR-Module
https://github.com/masud-technope/STRICT-QR-Module
https://github.com/masud-technope/STRICT-Replication-Package
https://github.com/masud-technope/STRICT-Replication-Package

39

[23] Mohammad Masudur Rahman and C. K. Roy. Textrank based search term
identification for software change tasks. In Proc. SANER, pages 540–544, 2015.

[24] Mohammad Masudur Rahman and Chanchal K. Roy. Quickar: Automatic
query reformulation for concept location using crowdsourced knowledge. In 2016
31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 220–225, 2016.

[25] Mohammad Masudur Rahman and Chanchal K. Roy. Strict: Information re-
trieval based search term identification for concept location. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 79–90, 2017.

[26] Mohammad Masudur Rahman and Chanchal K. Roy. Improving ir-based bug
localization with context-aware query reformulation. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, page 621–632. Asso-
ciation for Computing Machinery, 2018.

[27] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K Roy. To-
wards a context-aware ide-based meta search engine for recommendation about
programming errors and exceptions. In 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pages 194–203. IEEE, 2014.

[28] Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. Rack: Auto-
matic api recommendation using crowdsourced knowledge. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 349–359, 2016.

[29] Mohammad Masudur Rahman, Foutse Khomh, Shamima Yeasmin, and Chan-
chal K Roy. The forgotten role of search queries in ir-based bug localization: An
empirical study. Empirical Software Engineering, 26(6):116, 2021.

[30] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[31] Karen Spärck Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of documentation, 60(5):493–502, 2004.

[32] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 human language technology conference of the North Ameri-
can chapter of the association for computational linguistics, pages 252–259, 2003.

[33] Yujun Wen, Hui Yuan, and Pengzhou Zhang. Research on keyword extraction
based on word2vec weighted textrank. In 2016 2nd IEEE International Confer-
ence on Computer and Communications (ICCC), pages 2109–2113. IEEE, 2016.

40

[34] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. A brief overview of chatgpt: The history, status quo and potential
future development. IEEE/CAA Journal of Automatica Sinica, 10(5):1122–1136,
2023.

[35] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen Xu.
How practitioners perceive automated bug report management techniques. IEEE
Transactions on Software Engineering, 46(8):836–862, 2020.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Motivation and Research Problem
	Contributions
	Outline of the Thesis

	Background
	Embedding
	Cosine Similarity
	Degree of Interest
	Summary

	Methodology
	Construction of the dataset
	Text Preprocessing
	Syntactic Segmentation
	Term Decomposition
	Removal of Nonessential terms and Tokens

	Calculation of Term Weights
	Statistical Relationship
	Syntactic Relationship
	Semantic Relationship

	Search Term Ranking and Selection
	Parameter Tuning
	Experimental Design
	Performance Metrics

	Summary

	Empirical findings
	RQ1: How does each graph help us find effective search terms for concept location?
	RQ2: How do various combinations of graphs help us find effective search terms for concept location?
	Four-graph combinations
	Three-graph combinations
	Two-graph combinations
	Summary

	RQ3: Can we find optimal weights for various algorithms targeting search term selection?
	Comparison with Baseline Queries

	Summary

	Threats to validity
	Internal Validity
	External Validity

	Related work
	TF-IDF
	QUICKAR
	BLIZZARD
	ChatGPT
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

